# **Limited Phase II Environmental Site Assessment**

**Bell Trading Post Property Albuquerque, Bernalillo County, New Mexico** 

**NMED Organization Code: ENV00189** 

Activity Code: 51573103



## Prepared for:



The New Mexico Environment Department Ground Water Quality Bureau Voluntary Remediation Program 1190 St. Francis Drive Santa Fe, New Mexico 87504

## Prepared by:



6000 Uptown Boulevard NE, Suite 220 Albuquerque, New Mexico 87110

June 30, 2014



# **Table of Contents**

| 1.0 | INT  | RODUCTION                                                     | 1  |
|-----|------|---------------------------------------------------------------|----|
|     | 1.1  | Project Overview                                              |    |
|     | 1.2  | Site Description and Land Use                                 |    |
|     | 1.3  | Physical Setting.                                             | 3  |
|     | 1.4  | Site Contaminants of Potential Concern                        | 4  |
| 2.0 | SUM  | IMARY OF PREVIOUS INVESTIGATIONS                              | 5  |
|     | 2.1  | 1994 Subsurface Soil Investigation                            | 5  |
|     | 2.2  | Phase I Environmental Site Assessment                         | 6  |
|     | 2.3  | Phase II Site Investigation – DE&S/INTERA                     |    |
|     | 2.4  | REIS Limited Asbestos and LBP Survey                          | 7  |
| 3.0 | 2014 | LIMITED PHASE II SITE INVESTIGATION ACTIVITIES                | 7  |
|     | 3.1  | Pre-Mobilization Activities                                   | 8  |
|     | 3.2  | Characterization Sampling of Soil/Gas and Air                 | 9  |
|     |      | 3.2.1 Soil Vapor Sampling Outside the Site Building           | 10 |
|     |      | 3.2.2 Soil Vapor Sampling Within the Site Building Crawlspace |    |
|     |      | 3.2.3 Air Sampling                                            |    |
|     | 3.3  | Investigation-Derived Waste Management                        |    |
|     | 3.4  | Field Quality Assurance/Quality Control                       |    |
|     | 3.5  | Deviations                                                    |    |
| 4.0 | LIM  | ITED PHASE II CHARACTERIZATION SAMPLING RESULTS               | 14 |
|     | 4.1  | Technical or Regulatory Guidelines                            | 14 |
|     | 4.2  | Soil Gas                                                      | 14 |
|     | 4.3  | Air                                                           |    |
|     | 4.4  | Evaluation of Site Soil Gas and Air                           | 16 |
| 5.0 | CON  | ICLUSIONS AND RECOMMENDATIONS                                 | 17 |
| 6.0 | REF  | ERENCES                                                       | 19 |



## **List of Figures**

Figure 1 Site Location Map
Figure 2 Site Map
Figure 3 Soil Gas and Air Sampling Locations
Figure 4 VOC Concentrations in Soil Gas
Figure 5 VOC Concentrations in Air

#### **List of Tables**

Table 1 Field Quality Assurance/Quality Control Assessment
 Table 2 Laboratory Analytical Results - Soil Gas Vapor
 Table 3 Laboratory Analytical Results - Air

## **List of Appendices**

Appendix A Access Agreement Appendix B Site Photo Log

Appendix C Field Forms and Notes

Appendix D Laboratory Analytical Reports



## **Acronyms and Abbreviations**

ACBM asbestos-containing building materials

bgs below ground surface

CGI combustible gas indicator
City City of Albuquerque
COC certificate of completion

COPC contaminant of potential concern

CRWQCB California Department of Toxic Substances Control/Regional Water

**Quality Control Board** 

DE&S Duke Engineering & Services

EDB 1,2-dibromoethane

EPA U.S. Environmental Protection Agency

ESA environmental site assessment

ESC Lab Sciences

ESL environmental screening level

FD field duplicate

FHDC Family Housing Development Corporation

ft feet or foot

GCMS gas chromatograph/mass spectrometer

GWQB Ground Water Quality Bureau

HEAL Hall Environmental Analysis Laboratory, Inc.

ID identification number

IDW investigation-derived waste INTERA INTERA Incorporated

Keers Environmental Services, Inc.

LBP lead-based paint

μg/m<sup>3</sup> microgram per cubic meter

 $\begin{array}{ll} \mu g/L & \text{microgram per liter} \\ mg/kg & \text{milligram per kilogram} \\ mL/\text{minute} & \text{milliliter per minute} \\ MDL & \text{method detection limit} \end{array}$ 

NMED New Mexico Environment Department

NM-GS New Mexico Ground Water Standard as defined by the State of New

Mexico Water Quality Control Commission



## **Acronyms and Abbreviations (concluded)**

NMWQCC New Mexico Water Quality Control Commission

PID photoionization detector

PPE personal protective equipment

PRT Post-Run Tubing QA quality assurance

QAPP quality assurance project plan

QC quality control

RCRA Resource Conservation and Recovery Act

REIS Rhoades Environmental Inspection Services, Inc.

RL reporting limit

RPD relative percent difference RSL regional screening level

SAP sampling and analysis plan

Site Bell Trading Post Property, Albuquerque, New Mexico

SIM Select Ion Monitoring SSL soil screening level

TCE trichloroethene or trichloroethylene toxicity characteristic leaching procedure

TD total depth

UST underground storage tank

VISL vapor intrusion screening level

VISTA Vista Geoscience LLC of Golden, Colorado

VOC volatile organic compound

VRP Voluntary Remediation Program



#### 1.0 INTRODUCTION

This report presents the results of Limited Phase II Environmental Site Assessment (ESA) activities completed at the Bell Trading Post Property located at 1503 Central Avenue NW in Albuquerque, New Mexico (Site). The following Limited Phase II ESA field activities: (1) active soil vapor sampling and (2) indoor air sampling were performed at the Site by INTERA Incorporated (INTERA) in June 2014 at the request of the New Mexico Environment Department (NMED) Ground Water Quality Bureau (GWQB) (INTERA, 2014b). The intent of these additional characterization sampling activities is to further assess potential soil vapor and indoor air impacts associated with former industrial operations at the Site (NMED, 2013). The GWQB conducted a recent review of soil gas data from samples collected as part of a 2001 environmental investigation of the Site that indicated a possible historical release of solvents, specifically trichloroethene (TCE) (DE&S, 2001). All activities were completed using funds garnered from NMED's Community-wide Hazardous Assessment grant.

The Limited Phase II ESA field activities completed at the Site followed the guidance and requirements set forth in the approved site-specific Sampling and Analysis Plan (SAP)/Quality Assurance Project Plan (QAPP) (INTERA, 2014a). The Limited Phase II ESA SAP/QAPP was approved by NMED and the United States Environmental Protection Agency (EPA) on May 8 and May 12, 2014, respectively (INTERA, 2014a).

The remainder of this section (**Section 1**) presents general information regarding project background including, a history of Site operations and land use, physical setting and Site conditions, and a list of potential or known Site contaminants of concern. **Section 2** summarizes the environmental investigation history for the Site. Details regarding the latest Site investigation sampling activities, sample collection methodology, and any deviations from the project-specific SAP/QAPP that occurred during execution of the Limited Phase II ESA are presented in **Section 3**. A discussion of the corresponding analytical results is presented in **Section 4**. **Section 5** provides conclusions and recommendations and references are provided in **Section 6**. All associated figures, tables, and appendices are attached and follow the text.

#### 1.1 Project Overview

Located at 1503 Central Avenue Northwest in Albuquerque, New Mexico, the Site occurs within a mixed use commercial residential area of the City of Albuquerque (City) and is bounded to the southwest by Central Ave SW, northwest by Laguna Blvd NW, north by Roma Ave NW, and east by the termination of 15<sup>th</sup> St NW to the south (Figure 1 and 2).

A warehouse building of approximately 30,000 square feet (ft<sup>2</sup>), the Site was the former location of both a jewelry manufacturing (1947 until circa 1975) and later, a commercial film development facility (1982 until 1984) (INTERA, 2005). In 2001, the City decided to acquire the Site for



redevelopment as future residential housing. Due to its former operations, the Site qualified as a Brownfields property, defined by the EPA as "real property, the expansion, redevelopment, or re-use of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant." As a result, the City completed Site acquisition through participation in the NMED Voluntary Remediation Program (VRP), receiving a certificate of completion (COC) for the Site in November 2005. The building has subsequently been renovated by the Family Housing Development Corporation (FHDC) into residential housing units with supplemental street side commercial/retail space.

Recent review of 2001 Site data indicate a possible historical release of chlorinated solvent(s), specifically TCE, may have occurred at the Site (DE&S, 2001). Although NMED provided the City a COC for the Site in 2005, the lack of formal state and federal guidelines and standards as well as general understanding regarding vapor intrusion issues did not allow for the effective assessment and regulation of this contaminant pathway. In recent years, however, soil vapor intrusion concerns, especially related to the redevelopment of former industrial/commercial sites, have become a priority in both state and federal sectors and significant advances have been made in the field of estimating reasonable exposure levels of contaminants in soil vapor. In December 2013, the California Department of Toxic Substances Control/Regional Water Quality Control Board (CRWQCB), considered one of the experts in the field of assessing environmental concerns relating to contaminated soil vapor, updated their 2008 interim report summarizing Tier 1 and Tier 2 environmental screening levels (ESLs) for shallow soil gas vapor intrusion (CRWQCB, 2008 and 2013). At the same time, the EPA released draft soil vapor guidelines that allow the calculation of recommended vapor intrusion screening levels (VISLs) for use in evaluating the soil vapor intrusion pathways at sites/facilities (EPA, 2014b).

TCE was reported in 2001 Site soil vapor samples at concentrations ranging from 0.2 micrograms per liter ( $\mu$ g/L) (or 200 micrograms per cubic meter [ $\mu$ g/m³]) to 3.4  $\mu$ g/L (or 3,400  $\mu$ g/m³) (DE&S, 2001). These levels exceed both the recommended residential use EPA VISL and CRWQCB ESL for TCE. The recommended target sub-slab and exterior soil gas EPA VISL calculated for TCE based on a default residential land use scenario and a total target risk for carcinogens of  $10^{-5}$  is  $21 \mu$ g/m³; the CRWQCB ESL calculated for a residential site user based on a default residential land use scenario and a total target risk for carcinogens of  $10^{-5}$  is 1,000  $\mu$ g/m³ (EPA, 2014b; CRWQCB, 2013).

#### 1.2 Site Description and Land Use

The renovated building occupies most of the Site and is a single-story building currently developed as multiple residential housing units with the primary entrance facing Central Avenue (Figure 2). A large well-lit crawlspace is present beneath the front portion of the building (westend). Three storage/garage units are present on the southeast side of the building and are joined



to outdoor terraces of the main building by shared walls. Low concrete walls or metal fencing surrounds the entire property. Separate metal fencing encloses the storage units and partially separates the Site from the vacant lot to the east-southeast. A line of small evergreen trees/shrubs are also planted along the eastern border, just east of the wire fence. Secure parking for residents of the Site is available west of the building. Residential houses also immediately surround the property with the exception of a vacant lot to the southeast-east beyond which is occupied by retail/commercial space.

Prior to 1947, historical use of the Site was primarily residential. After 1947, historical use transitioned to commercial. From 1947 until 1975, Bell Trading Post occupied the Site building and conducted commercial jewelry manufacturing. The Site building was vacant from 1976 until 1982. From approximately 1982 until 1984, Albuquerque Photo Lab occupied the Site building and performed commercial film development. Finally, from 1985 until 1992, Michelson Metals occupied the Site building, using the property as an office for commodity trading only (office use, nonindustrial) (INTERA, 2005).

#### 1.3 Physical Setting

The following general hydrogeologic description of the Site is excerpted from the 2001 Phase II ESA report (DE&S, 2001).

The Site is located in the south-central portion of the Albuquerque Basin. This basin is one of the largest of the south-trending series of grabens that form the Rio Grande Drainage Basin, which was formed in response to the Rio Grande Rift (Thorn et al., 1993). The Rio Grande Rift is a north- to south-trending, downdropped area extending for more than 600 miles. The rift is an area of crustal extension originating in central Colorado and extending south through New Mexico to south of the Mexico/Texas border.

The Albuquerque Basin is filled with up to 10,000 ft of clastic sediments. These sedimentary deposits are of two types: 1) sediment that has filled the subsiding trough, and 2) floodplain deposits, terraces, dunes, alluvial fans and cones, spring deposits, caliche blankets, landslides, and some pediments. The latter group of deposits represents processes of erosion and deposition which may have prevailed throughout subsidence and filling of the basin (Kelley, 1977). The Santa Fe Formation sediments fill the majority of the basin.

The Tertiary and Quaternary Santa Fe Formation is composed of unconsolidated to loosely consolidated gravels, sands, silts, and clays. The thickness of this unit ranges from 2,400 ft on the basin margins to 14,000 ft along the axis of the basin. In the vicinity of the Site, the thickness of this formation is on the order of 4,700 ft. The Santa Fe Group is overlain by Quaternary sediments, which have a similar facies distribution. These post-Santa Fe deposits are alluvial fan and floodplain deposits that are up to 200 ft thick (Thorn et al., 1993).



The Santa Fe Group and post-Santa Fe deposits are the principal water bearing units in the vicinity of the Site and are hydraulically connected (U.S. Army Corps of Engineers, 1979; Thorn et al., 1993). However, the Albuquerque Basin aquifer is anisotropic laterally and vertically due to spatial variations in the lithology of these two water-bearing units (Chamberlin et al., 1992). Clay layers 12 to 15 ft thick are commonly observed in the alluvium of the Albuquerque Basin; these clay layers restrict vertical movement of water and may locally limit hydraulic interconnection between the shallow Quaternary aquifer and the Santa Fe Group aquifer (Thorn et al., 1993). As a result of spatial variations in lithology, the hydraulic transmissivity of the Albuquerque aquifer varies tremendously, from less than 10 ft²/day to 80,000 ft²/day (Thorn et al., 1993). The hydraulic conductivity of the upper part of the Santa Fe Group varies also but is estimated to be approximately 20 ft per day, average in the vicinity of the Site (Thorn et al., 1993).

The water table configuration in the Albuquerque area has changed considerably over time due to population growth and the resulting increases in water pumping and use. Ground water flow in the vicinity of the Site before large-scale ground water development is thought to have been to the southwest and this condition existed at least into the mid- to late-1930s (Thorn et al., 1993). Ground water elevation contours representing 1960–1961 conditions in the Albuquerque area show a continued general southwesterly flow direction on the east side of the Rio Grande; however, a cone of depression is evident in the general area of the Site (Bjorklund and Maxwell, 1961). The cone of depression was primarily the result of pumping the Main Plant well field, previously located in the downtown Albuquerque area. The Main Plant wells were drilled between 1920 and 1948, and consisted of more than 23 wells; this well field is now completely abandoned.

Ground water beneath the Site is believed to flow in an easterly direction. City-wide ground-water contours from 1992, and simulated 1994 hydraulic-head levels, reflect a large cone of depression had developed on the east side of Albuquerque as a result of ground-water withdrawal (Kernodle et al., 1995); this cone of depression appears to have influenced the ground water flow direction beneath the Site and throughout downtown Albuquerque. During implementation of the Phase II ESA (DE&S, 2001), groundwater was encountered at the Site at approximately 20 ft below ground surface (bgs).

#### 1.4 Site Contaminants of Potential Concern

Contaminants of potential concern (COPCs) identified for the Site include:

• volatile organic compounds (VOCs), specifically TCE

VOCs have previously been reported in Site soil vapor collected from within the crawlspace of the current Site Building at levels in excess of the current recommended vapor instruction



guidelines. These reported levels may impact indoor air quality within and around the immediate vicinity of the Site building thus may pose an unacceptable exposure risk to current residents.

#### 2.0 SUMMARY OF PREVIOUS INVESTIGATIONS

The following environmental investigations have been previously completed at the Site:

- 1994: Limited subsurface soil investigation by Keers Environmental Services, Inc. (Keers)
- 2000: Phase I ESA by Keers
- 2001: Phase II Site Investigation by Duke Engineering & Services (now known as INTERA)
- 2003: Asbestos and lead-based paint (LBP) Inspection by Rhoades Environmental Inspection Services, Inc. (REIS)

Brief summaries of these Site environmental investigations are provided in the following sections.

Based on results obtained as part of these investigations, the following voluntary remediation activities were completed for the Site by INTERA and their subcontractors in 2005:

- Removal of pigeon-droppings from the Site building.
- Removal of asbestos-containing building materials (ACBM)
- Removal of LBP
- Excavation and removal of lead-containing soils from within the building crawlspace

These voluntary remediation activities are fully documented in INTERA's Final Voluntary Remediation Completion Report for the Site (INTERA, 2005).

#### 2.1 1994 Subsurface Soil Investigation

During the 1994 Site subsurface soil investigation, Keers collected 10 surficial soil samples (surficial soil samples SS-01 through SS-10) from within the building crawl space (Keers, 1994). The surficial soil samples were collected from areas with high potential for contamination (e.g., from under drains, sumps, and piping) and analyzed for VOCs, total cyanide, and Resource Conservation and Recovery Act (RCRA) metals. Silver was identified at a concentration of 134 milligrams per kilogram (mg/kg) in surficial soil sample SS-07 and chromium and lead concentrations of 174 mg/kg and 1,670 mg/kg, respectively, in surficial soil sample SS-09. No other constituents were detected.



Based on these results, two additional subsurface soil samples (SS-07, depth 5 ft and SS-09, depth 5 ft) were collected from surficial sampling locations SS-07 and SS-09 and analyzed for the detected constituents via toxicity characteristic leaching procedure (TCLP). These samples reported <0.010 mg/kg for silver at SS 07 and 0.047 mg/kg for chromium and 0.890 mg/kg for lead at SS-09. Keers concluded that TCLP results "indicated that contaminants are well below current EPA regulatory limits" (Keers, 1994).

With the exception of lead in surficial soil sample SS-09, the analytical results for the RCRA metals reported by Keers are below current NMED soil screening levels (SSLs) for residential land use (NMED, 2012). The soil sample concentration of lead (1,670 mg/kg) identified by Keers in surficial soil sample SS-09 was the impetus for the lead-containing soil removal activities conducted in as part of the 2005 voluntary remediation activities at the Site.

#### 2.2 Phase I Environmental Site Assessment

A Phase I ESA was completed for the Site by Keers in December 2000 (Keers, 2000). The Phase I ESA reported the following environmental Site concerns:

- An active Underground Storage Tank (UST) site was identified approximately oneeighth of a mile northwest of the Site. The UST site is identified as The World Motel at 1721 Central Avenue NW. The NMED Underground Storage Tank Bureau indicated that a release of gasoline has impacted groundwater hydraulically ugradient of the Site. Keers recommended a periodic review of the most current leaking UST information to determine and assess the extent of soil or groundwater contamination, if any, that may be caused by the up-gradient active leaking UST site and possibly impact the Site.
- The age of the structure located on this Site indicates the potential for construction materials containing either ACBM or LBP or both.
- The Site location in a designated flood zone indicates the potential for environmental impact during a major flood event.

### 2.3 Phase II Site Investigation – DE&S/INTERA

Duke Engineering & Services (DE&S) (now known as INTERA) completed a Phase II Site Characterization for the Site in November 2001 (DE&S, 2001). Among the Phase II objectives was to investigate impacts to Site soils and ground water from previous site activities (i.e., impact from solvents, cyanide, or heavy metals used in the jewelry manufacturing or commercial film development activities). INTERA advanced 12 Geoprobe<sup>®</sup> soil borings and submitted 13 soil samples, 13 soil gas samples, and four ground water samples for laboratory analysis. The soil samples were analyzed for the presence of cyanide and heavy metals. Although two soil samples were identified to contain arsenic and iron (naturally occurring metals) at levels above NMED SSLs, the levels were determined to be well within natural variance levels for soils in the



southwestern United States and no further investigation was initiated. The 2001 soil gas and groundwater sampling locations are depicted on Figure 3.

Soil gas samples were analyzed for VOCs. The ground water samples were analyzed for cations and anions, pH, VOCs, cyanide, and heavy metals. The results of the soil gas sampling indicate that a chlorinated solvent release may have occurred at the Site some time ago. TCE was reported in 2001 Site soil vapor samples at concentrations ranging from  $0.2 \,\mu\text{g/L}$  (200  $\,\mu\text{g/m}^3$ ) to  $3.4 \,\mu\text{g/L}$  (3,400  $\,\mu\text{g/m}^3$ ) (DE&S, 2001). These levels exceed both the recommended residential use EPA VISL and CRWQCB ESL for TCE (EPA, 2014b; CRWQCB, 2013).

The results of the ground water sampling identified volatile organic compounds in ground water samples at concentrations below New Mexico Water Quality Control Commission (NMWQCC) standards. TCE was the only VOC compound identified reported above laboratory method detection limits. TCE was reported from the two samples (primary and field duplicate [FD]) collected from soil boring SB-12, at a concentration of 1.5  $\mu$ g/L, well below the TCE New Mexico Ground Water Standard (NM-GS), defined by NMWQCC as 100  $\mu$ g/L (NMED, 2004).

#### 2.4 REIS Limited Asbestos and LBP Survey

On behalf of INTERA, Mr. Ronald K. Rhoades of REIS, performed a limited asbestos and LBP inspection survey at the Bell Trading Post Facility building in July 2003. The purpose of this limited asbestos survey was to sample readily accessible ACBM and LBP-containing building materials that may have been used in the construction or any subsequent renovation of the building. ACBM and LBP-containing building materials were identified at the Bell Trading Post Facility. LBP was not detected by REIS in samples collected from exterior painted surfaces.

#### 3.0 2014 LIMITED PHASE II SITE INVESTIGATION ACTIVITIES

From May 28 to June 2, 2014, INTERA and their subcontractors completed the following activities in support of additional soil vapor characterization for the Site:

- Exterior to the Site Building:
  - advanced a total of three (3) soil borings to an approximate total depth (TD) of 3 ft bgs and extracted soil vapor from each borehole for laboratory analysis; and,
  - collected a time-integrated outdoor air sample representative of "ambient" conditions over an 8-hour period for VOC analysis.
- Within the Site Building:
  - advanced a total of two (2) soil borings within the warehouse crawlspace to an approximate TD of 2 ft bgs and extracted soil vapor from each borehole for laboratory analysis; and,



- collected four air samples (2 "source" air samples within the warehouse crawlspace; 2 "ambient" air samples within occupied/communal areas) over an 8-hour period for VOC analysis.
- Submitted all air samples to the analytical contract laboratory, Hall Environmental Analysis Laboratory, Inc. (HEAL), of Albuquerque, New Mexico, for analysis of VOCs via EPA Method TO-15 Select Ion Monitoring (SIM).
- Submitted all soil gas samples to the contract laboratory, Vista Geoscience LLC (VISTA) of Golden, Colorado, for analysis of VOCs via EPA Method 8260 using a ATD-gas chromatograph /mass spectrometer (GCMS).
- Managed investigation-derived waste (IDW).
- Compared analytical results for soil gas/air samples to applicable regulatory or technical standards/guidance to determine the level of impact at the Site (**Section 4**).

Details regarding completed Phase II ESA activities and sample collection methodology are presented in the **Sections 3.1 to 3.3** below. Field quality assurance (QA)/Quality Control (QC) procedures implemented during the Limited Phase II Activities are summarized in **Section 3.4**. Any deviations from the project-specific SAP/QAPP that occurred during the Limited Phase II ESA field execution are discussed in **Section 3.5**. A discussion of the corresponding Limited Phase II ESA analytical results are presented in **Section 4**.

#### 3.1 Pre-Mobilization Activities

Prior to initiating any field investigation, the following planning and initial field mobilization activities are typically required:

- Obtain Site access agreement(s) from Site current land owners/representative(s);
- Complete all necessary permits and applications as required through applicable regulatory agencies;
- Identify, mark, and assess the degree to which any utilities may be impacted; and,
- Identify and establish all necessary and proper health and safety procedures for safe and effective implementation of the proposed activities.

For this investigation, full Site access was granted to NMED and/or its designees by the current Site owner, FHDC, as documented by the access agreement, a copy of which is included in Appendix A. On May 23, 2014, INTERA contacted New Mexico One Call to identify the locations of underground utilities at the Site. Health and safety procedures for safe and effective implementation of the soil gas/air sampling were established in the approved SAP/QAPP and accompanying site-specific health and safety plan [HASP] (INTERA, 2014, Appendix C) but Site sampling conditions were also verified prior to project initiation. On May 28, 2014,



INTERA performed a Site visit to (1) confirm all utility locates and all proposed sampling locations had been properly marked (2) meet/debrief the current Site owner/representative regarding the upcoming activities and (3) establish the current condition of the building crawlspace and determine the need for any additional equipment prior to proceeding with sampling.

No permits or applications were needed to conduct the soil gas/air sampling at the Site.

#### 3.2 Characterization Sampling of Soil/Gas and Air

On June 2, 2014, ambient air and soil gas samples were collected from the locations depicted on Figure 3. All locations were recorded in the field post-sample collection.

Soil gas samples were collected in sorption tubes via vacuum using a system comprised of coring/drill rod; a Post-Run Tubing (PRT) adapter tool; clean, dedicated Teflon-lined polyethylene tubing (for sample collection); and a peristaltic pump equipped with a flow regulator and bi-way valve. First, core/drill rod equipped with an expendable drive-point was manually driven to the target soil gas sampling depths of 2 or 3 ft bgs using a heavy slide hammer. The rod was then retracted approximately 4 to 6 inches to drop the drive point and create a void at the end of the rod from which to collect a soil gas sample. A Teflon<sup>®</sup> lined (¼-in or ¾-in) tube and threaded adaptor was then inserted into the rod and threaded into the PRT tool at the bottom of the sample hole. The tubing was connected to both a portable peristaltic pump, which provided the vacuum for sample extraction, as well as a photoionization detector (PID)/combustible gas indicator (CGI) to monitor VOCs and CO<sub>2</sub> and O<sub>2</sub> levels, respectively, during sample purging and collection. The system was then purged and upon stabilization, a soil vapor grab sample was collected into a loaded sorbent tube using dedicated sample tubing and a pump equipped with a flow meter. Flow was monitored to help ensure that the rate at which the soil gas sample was extracted stayed within the recommended extraction rate of 200 mL/minute.

At each soil gas sample location, two (2) sorbent tubes were collected. This duplication effort in sampling was performed to ensure that a duplicate sample from each location was available for laboratory analysis, if a second run on any sample was required (e.g., laboratory instrument failure, operator error, etc.).

Air samples were collected in clean, dedicated, 6L SUMMA canisters equipped with 8-hour regulators. The SUMMA canisters were provided to INTERA by HEAL. The SUMMA canisters were deployed in the morning and the regulator valve opened to initiate air sample collection. The canisters were then retrieved after a period of 8 hours. Initial and final canister pressures were recorded upon deployment and retrieval, respectively.



Per the SAP/QAPP, all samples were labeled with the appropriate sample identification number (ID) and any other parameter as specified by the analytical laboratory with indelible ink and properly stored on-Site until sample custody could be transferred to the selected offsite laboratory for analysis. On-Site storage and handling of each soil vapor sample included placement in dark plastic bags within a cooler containing ice.

Upon sample collection, all samples were either shipped via Federal Express (sorption tubes to the VISTA Geoscience laboratory in Golden, Colorado) or physically transferred (SUMMA canisters to HEAL in Albuquerque, New Mexico) the same day they were collected at the Site. Sample transfer was documented on the appropriate sample chain-of-custody form(s).

All reusable sampling equipment such as the PRT and drive rod was decontaminated prior to each use. Decontamination was conducted by scrubbing the outside of the equipment with a brush in a solution of water and nonphosphate detergent (Alconox or Liquinox) and double rinsing equipment with distilled water. Excess decontamination water was then wiped off tools exteriors and the inside allowed to air dry prior to re-use. No decontamination was required of the soil gas sample tubing as disposable dedicated sample tubing was utilized at each sample location.

A photo log documenting the Limited Phase II ESA characterization sampling activities is provided in Appendix B. Specifics regarding the characterization sampling conducted as part of the Limited Phase II efforts at the Site are provided in the following subsections.

#### 3.2.1 Soil Vapor Sampling Outside the Site Building

Six (6) soil gas vapor grab samples (sample IDs: SG-01-249471, SG-01-249472, SG-02-249479, SG-02-249480, SG-03-249473, SG-03-247803) were collected from three locations (SG-01 through SG-03) exterior to the Site Building (Figure 3). The soil gas vapor samples were collected from the Site shallow subsurface at approximately one foot below the base of 1.5-in diameter soil borings, approximately 1.5 to 2 ft bgs. These soil borings were advanced using an concrete coring bit on the morning of June 2, 2014, by INTERA's subcontractor, Concrete Coring Services, to clear each soil vapor sample location of concrete/asphalt surface layer and expose the native substrate soils for soil gas sampling.

Prior to collecting a sample at each location, the sample system was purged a minimum of three volumes or until  $CO_2$  and  $O_2$  levels stabilized to ensure that any residual air remaining in the system had been removed. VOCs levels were also monitored during purging using a PID. All screening/flow parameters were recorded on the appropriate sample collection log and/or the field log book, copies of which are provided in Appendix C.

Once purging was complete, two (2) soil vapor grab samples were collected at each location into sorbent tubes using the pump equipped with a flow meter. During extraction of the first soil gas



sample at SG-01 (SG-01-2490471), flow was inconsistent and the team had difficulty keeping the flow under the target extraction rate. To resolve this for subsequent soil gas samples, a valve was placed between the pump and the flow meter which reduced system air flow and enabled sampling efforts to continue with consistent extraction of soil gas at a rate at or just below 200 mL/minute.

After 1 liter of soil gas flowed through the sorbent tube, flow was shut off and the sorbent tube was removed, resealed, tagged with the sample ID, and placed in a labeled bag. Specifics regarding each sample were recorded on the corresponding chain-of-custody form (s), copies of which are provided in Appendix D. Samples were then prepared for shipment to VISTA for analysis of VOCs via EPA Method 8260B.

Upon completion of soil gas sample collection, the borings were backfilled to the surface with sand and an asphalt (SG-01 and SG-02) or cement (SG-03) patch put in-place, as appropriate. Any cuttings derived from the coring efforts (minimal amount of material) were placed back in the soil boring prior to backfilling. Surface completions were mounded slightly above the surrounding pavement (1/4-in) at the request of the current Site owner/representative.

#### 3.2.2 Soil Vapor Sampling Within the Site Building Crawlspace

A total of four (4) soil gas vapor grab samples (sample IDs: SG-04-249477, SG-04-249478, SG-05-247808, SG-05-249476) were collected from two locations (SG-04 and SG-05) within the crawlspace of the Site Building (Figure 3). The two soil borings were advanced below the dirt floor of the crawlspace to a TD of approximately 2 ft bgs. Although, the original target TD for these samples was approximately 1 ft bgs, a decision was made to advance an extra foot due to the relatively loose soils within the Site building crawlspace to try and ensure extraction of subsurface soil vapor only. The crawlspace dehumidifier was also turned off prior to and during the crawlspace sample collection efforts to help ensure minimal draw and prevent possible dilution of the soil vapor samples.

At each location, two samples were collected into sorbent tubes after the sampling system had been purged a minimum of three volumes and/or until CO<sub>2</sub> and O<sub>2</sub> levels stabilized. VOCs levels were also monitored during purging using a PID. All flow parameters/screening results recorded on the appropriate sample collection log and/or the field log book (Appendix C).

All four samples were then prepared for shipment to VISTA for analysis of VOCs via EPA Method 8260B.

Upon completion of soil gas sample collection, no backfill of the borings was required as the boreholes collapsed immediately after the drill pipe was removed due to soft unconsolidated soils at the near surface.



#### 3.2.3 Air Sampling

A total of five (5) time-integrated air samples were collected in SUMMA canisters at locations: C-01 and C-02; I-01 an I-02; and O-01 (Figure 3) as follows:

- two (2) "source" air samples within the Site building crawlspace (sample IDs: Air-C-01 and Air-C-02);
- two (2) "ambient" air samples within common/occupied areas of the Site Building (sample IDs: Air-I-01 and Air-I-02); and,
- one (1) "ambient" air sample exterior to the Site Building (sample ID: Air-O-01).

After the 8-hr sampling period elapsed, all SUMMA canisters were closed, collected, and packaged for shipment. A HEAL representative mobilized to the Site and collected the SUMMA canister package from INTERA and shipped the package via Fedex overnight delivery to ESC Lab Sciences of Mt. Juliet, Tennessee. ESC analyzed each SUMMA canister for the presence of VOCs via EPA Method TO-15 SIM. Sample custody transfer was documented on appropriate sample chain-of-custody form(s), copies of which are provided in Appendix D.

#### 3.3 Investigation-Derived Waste Management

Implementation of the Limited Phase II ESA field activities generated limited amounts of the following IDW:

Used personal protective equipment (PPE) (e.g. gloves),

Used disposable sampling tubing and sampling equipment,

Equipment decontamination water, and

Miscellaneous waste (paper towels used for decontamination etc.).

Due to the low level of contamination expected to be present on these waste streams, these IDW waste steams were managed as nonhazardous solid waste. Non liquid waste (e.g. used PPE, wipes, sample tubing etc.) was containerized in plastic bags, sealed, and disposed of in a general refuse dumpster. Any liquid waste generated during equipment decontamination procedures was disposed of by distributing across an impermeable surface at the Site and allowed to evaporate.

#### 3.4 Field Quality Assurance/Quality Control

During execution of the Limited Phase II ESA, the following samples were collected to measure precision and accuracy in accordance with the specified QA/QC requirements outlined in the SAP/QAPP: field trip blank and FDs. The SAP/QAPP identified a soil gas field trip blank to be submitted along with the samples to ensure no contamination was introduced during sorbent tube storage and transport. This QA sample was not formally collected because an extra sorbent tube was not sent by VISTA. A single field trip blank for the project was collected and analyzed for VOCs by EPA Method 8260B (see discussion below). No field equipment rinsate sample(s) were



collected during this field investigation as air and soil gas vapor samples were collected using dedicated, disposable sampling equipment.

Though duplicate samples were collected at all soil gas sampling locations as described in **Section 3.2**, only the duplicate from Location SG-03 (SG-03DUP) was initially submitted to VISTA laboratory as an FD and analyzed for the same set of parameters as the primary sample. Analysis of one FD represents approximately 10% of the total number of samples collected for analysis as part of this investigation and fulfills the minimum amount of sample duplication efforts recommended for a valid field QA program (INTERA, 2014a). The association of the FD with the primary sample was recorded on appropriate sample forms and on the chain-of-custody (Appendix D).

The intent was to compare results between the primary investigation sample collected from Location SG-03 with the results obtained from the FD via a relative percent difference (RPD) analysis to aid in the evaluation of laboratory precision and sample collection method consistency. However, upon receipt and analysis of the sorbent tube SG-03DUP, it was observed that the tube was clean (no response on the GCMS) and was alternatively, in effect, a field trip blank: No constituents were detected in the sample above reporting limits (RLs).

At the request of INTERA, VISTA analyzed all remaining sorbent tube duplicates and reported the soil gas vapor sample results at Location SG-02 for the purposes of the RPD analysis. Results of the duplicate RPD analysis for samples collected at Location SG-02 are presented on Table 1.

#### 3.5 Deviations

The following deviations from the SAP/QAPP occurred during performance of the 2014 Limited Phase II ESA field activities:

Soil gas sample collection - For soil gas samples collected within the crawlspace of the Site Building the target TD for sample collection was defined in the approved SAP/QAPP at 1 ft bgs. This was based on an assumption that crawlspace conditions were confined with poor air circulation and that the soil at the near surface was relatively hard and consolidated. However, a Site inspection performed by INTERA on May 28, 2014, prior to field mobilization, found that crawlspace conditions had changed since Site redevelopment. Air flow was assisted throughout the entire air space by dehumidifiers and fans, the crawlspace was well lit, and the near soil at the surface was relatively loose. Based on these observations, a decision was made to advance an extra foot below the floor of the crawlspace to minimize the inadvertent draw of ambient crawlspace air into the sample during soil gas extraction.



Field QA Program - the approved SAP/QAPP identified the need for a field trip blank to be assigned for the soil gas sampling efforts. A designated field trip blank was not identified for use during sample collection, storage, and transport of the sorbent tubes; however, as discussed in **Section 3.4** above, Sample SG-03DUP inadvertently became a field trip blank for the investigation.

#### 4.0 LIMITED PHASE II CHARACTERIZATION SAMPLING RESULTS

Site VOC data collected from both soil gas and air were evaluated to further assess potential soil vapor and indoor air impacts associated with former industrial operations at the Site. In this section, INTERA presents the results of these data collection and assessment activities with respect to applicable regulatory or technical guidelines below as well as discusses these results relative to previous environmental data obtained for the Site.

#### 4.1 Technical or Regulatory Guidelines

As summarized in the approved SAP/QAPP, both EPA and NMED are the primary decision makers regarding this Site (INTERA, 2014a); therefore, the recommended guidelines for assessing soil vapor concerns considered most applicable to this Site are the EPA VISLs for a sub-slab and/or exterior soil gas exposure, updated May 2014 (EPA, 2014b). The recommended guidelines for assessing air quality at the Site considered most applicable are the EPA regional screening levels (RSLs) for indoor air, updated May 2014 (EPA, 2014a).

Any Site VOC constituent for which an EPA VISL or RSL was not available, the corresponding CRWQCB Tier 1 ESL, if listed, for shallow soil gas vapor or air was referenced and utilized to assess potential environmental impact.

VOCs in both Site soil gas and air were evaluated using the recommended default parameters and exposure factors reflective of a residential use scenario, the current and foreseeable future land use of the Site. For the evaluation of carcinogenic VOCs, EPA RSLs and VISLs and, if applicable, CRWQCB Tier 1 ESLs, were adjusted to reflect a total target carcinogenic risk of  $10^{-5}$ . Assigning a less conservative total target carcinogenic risk of  $10^{-5}$  is standard practice for assessing carcinogenic risk within the State of New Mexico as described in the NMED document, Risk Assessment Guidance for Site Investigations and Remediation (NMED, 2012). If non-carcinogenic ESL is lower than  $10^{-5}$  carcinogenic screening level, the lower (more conservative) ESL should be used.

#### 4.2 Soil Gas

Six soil gas samples were analyzed by VISTA via EPA Method 8260 on June 12, 2014. All sample locations are depicted on Figure 4. The 2014 soil gas analytical results are summarized in Table 2. The locations of elevated (in excess of EPA VISLs) soil vapor VOC concentrations are



shown on Figure 4. A copy of the complete analytical report for soil vapor is provided in Appendix D.

In Site soil vapor, 26 out of the 71 VOCs analyzed were found to be present in one or more samples at concentrations above RLs. Of these COPCs, chloroform, naphthalene, and TCE were present in one or more samples at concentrations in excess of EPA VISLs (Table 2, Figure 4). All three of these VOCs were identified in soil vapor collected from locations SG-02 and SG-03 situated along on the north/west perimeter of the building. Chloroform was reported at a concentration of 7.7  $\mu$ g/m³ at SG-02 and 29  $\mu$ g/m³ at SG-03. The corresponding EPA VISL for chloroform in sub-slab/exterior conditions (adjusted for a total target cancer risk of 10<sup>-5</sup>) is 12  $\mu$ g/m³. Chloroform was not identified in soil vapor above RLs at any other locations.

Naphthalene was present in soil vapor at all locations except SG-04. At locations SG-02 and SG-03 naphthalene was reported at concentrations of 8.7  $\mu$ g/m<sup>3</sup> and 5.4  $\mu$ g/m<sup>3</sup>, respectively: the corresponding EPA VISL for naphthalene in sub-slab/exterior conditions (adjusted for a total target cancer risk of  $10^{-5}$ ) is 8.3  $\mu$ g/m<sup>3</sup>. Naphthalene was also reported at Location SG-01 and SG-05 but at trace concentration (at or below the quantitation limit [RL]).

TCE was reported in soil vapor at SG-02 at a minimum concentration of 1,800  $\mu g/m^3$ . Exact quantitation of TCE at this location could not be evaluated due to limitation of the analytical method's maximum quantitation limit/method detection limit (MDL) (Appendix D). This reported concentration far exceeds the recommended EPA VISL for TCE of 21  $\mu g/m^3$ . TCE was also reported in soil vapor at locations SG-03 and SG-05 but the reported TCE concentrations at these locations were significantly less (11  $\mu g/m^3$  and 14  $\mu g/m^3$ , respectively) and below recommended screening levels.

#### 4.3 Air

Five SUMMA canisters were analyzed by ESC Lab Sciences (a HEAL subcontracted laboratory) via EPA Method TO-15 SIM on June 8, 2014. Analytical results are summarized in Table 3. All SUMMA canister sample locations are shown on Figure 5. The locations of elevated VOC concentrations in air (in excess of EPA RSLs) are depicted on Figure 5. A copy of the complete analytical report for air is provided in Appendix D.

Of the 22 VOCs analyzed, the following were found to be present in one or more air samples at concentrations above RLs: benzene, carbon tetrachloride, chloroethane, chloroform, cloromethane, 1,4-dichlorobenzene, ethylbenzene, PERC, TCE and vinyl acetate. Of these COPCs, only chloroform was definitively present at concentrations in excess of the EPA RSL (Table 3, Figure 5).



Chloroform was identified in both air samples collected within the Site building crawlspace at the following concentrations: 1.5  $\mu$ g/m<sup>3</sup> in sample Air-C-01 and 1.7  $\mu$ g/m<sup>3</sup> in sample Air-C-02: the corresponding EPA RSL for chloroform in indoor air (adjusted for a total target cancer risk of 10<sup>-5</sup>) is 1.2  $\mu$ g/m<sup>3</sup>.

In addition to chloroform, 1,2-dibromoethane (EDB), was also retained as a Site COPC in air due to an insufficient lower MDL. A known carcinogen, EDB can cause a variety of acute health effects, primarily through inhalation. Although EDB was not present above RLs in any of the air samples collected at the Site, the EPA RSL for EDB in indoor air is very conservative, 0.05  $\mu g/m^3$ . The current MDL for EDB via EPA Method TO-15 SIM is 0.15  $\mu g/m^3$ . Therefore, current data is not sufficient to accurately assess the potential environmental risk(s) posed by EDB because the MDL is higher than the respective EPA RSL for EDB.

#### 4.4 Evaluation of Site Soil Gas and Air

Previous assessment of soil gas at the Site indicates a possible historic release of chlorinated solvents, specifically TCE, may have occurred at the Site as a result of former Site operations (DE&S, 2001). Elevated levels of TCE (3,400  $\mu$ g/m³) were identified in the 2001 soil gas sample collected at location SB-03 (Figure 3) immediately north of the building along Laguna Blvd.

The 2014 Limited Phase II ESA investigation results confirm the presence of elevated TCE in soil vapor in the northwestern section of the Site. Chloroform, naphthalene, and TCE were all identified in soil vapor collected both north and within the northwest driveway of the building (Locations SG-02 and SG-03).

Air samples collected as part of the 2014 Limited Phase II ESA investigation in the Site building crawlspace also indicate subsurface transport of VOCs is occurring beneath the Site building. Chloroform was identified in air collected from the Site building crawlspace at concentrations above EPA RSLs. However, no VOCs were detected in air at levels of concern within occupied areas of the Site building. This is likely due to the condition of the Site building floor and the ventilation system that operates within the Site building crawlspace. The ventilation system appears to maintain good air flow and air exchange beneath the Site building thus limiting the accumulation of VOCs in air within the crawlspace.

Both chloroform and TCE are known metal degreasing solvents that were extensively used by the jewelry manufacturing industry. Both halogenated aliphanes, these constituents degrade far more slowly than some other VOCs (such as halogenated aromatics) and mainly under anaerobic conditions (EPA, 1993).



#### 5.0 CONCLUSIONS AND RECOMMENDATIONS

Current available data indicate that an acute release of chlorinated solvents, specifically TCE and chloroform, historically occurred at the Site or within the immediate vicinity of the Site most likely during the Site's operation as a jewelry manufacturing facility. Environmental investigation data indicates that TCE and chloroform are present in soil vapor within the northwest corner of the Site, at approximately the Roma Ave and Laguna Blvd intersection (2001 Location SB-03, Figure 3). Concentrations appear to quickly dissipate to the east and west and less so to the south, suggesting a potential south/southwest trending vapor plume that extends underneath the current Site building. The extent of the plume appears to be contained within the Site property to the east, west, and south; however, no data currently exists to assess soil vapor VOC concentrations across Laguna Blvd, immediately north/northwest of the Site.

Based on current documentation regarding Site history and use, the source of the chlorinated solvents was likely a result of the Site's former jewelry manufacturing operations. The Phase I ESA report completed by Keers in 2000 identified no specific impacts to the Site from other facilities within ASTM-specified search distances (Keers, 2000). Both TCE and chloroform are relatively immune to dechlorination under vadose (aerobic) conditions and will continue to slowly diffuse and/or migrate upward through the subsurface as soil vapor.

Current data indicates that the VOC levels do not pose an immediate risk to the current residents of the Site building. The levels of TCE and chloroform measured in air within the living areas of the Building are below EPA RSLs for residential use. The risk associated with EDB, though not identified above the MDL in any of the air samples, could not be evaluated with regard to its respective EPA RSL.

Maintaining the VOC concentrations below levels of concern is likely dependent on continued operation of a well-ventilated Site building crawlspace. The levels of VOCs present in indoor air may also be impacted by changes in the barometric pressure which can have a seasonal fluidity. For example, changes in humidity, the use of heating/cooling systems within the building, and variable water use outside the building can all impact the rate at which soil gas migrates upward within the subsurface.

As such, INTERA recommends the following actions to be completed for the Site:

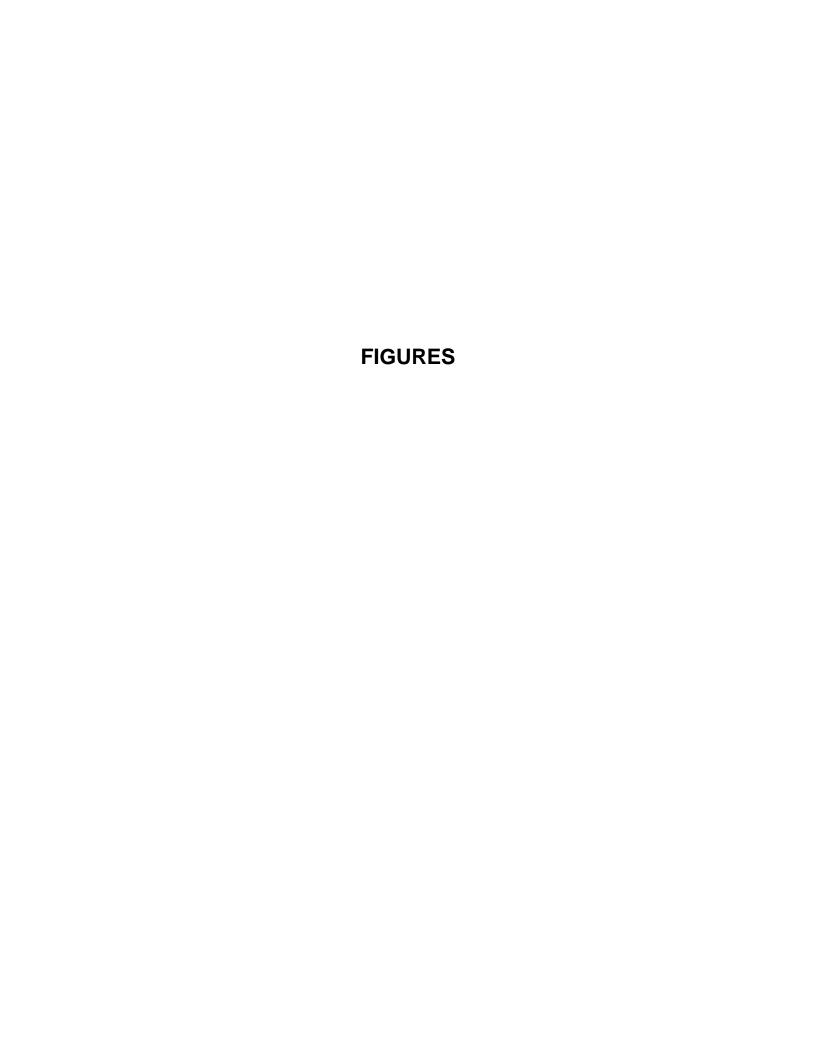
- Perform additional limited soil vapor sampling north/northwest of the Site to determine northern lateral extent of the chlorinated solvent plume,
- Ensure maintenance and continued operation of the Site building's crawlspace ventilation system, and

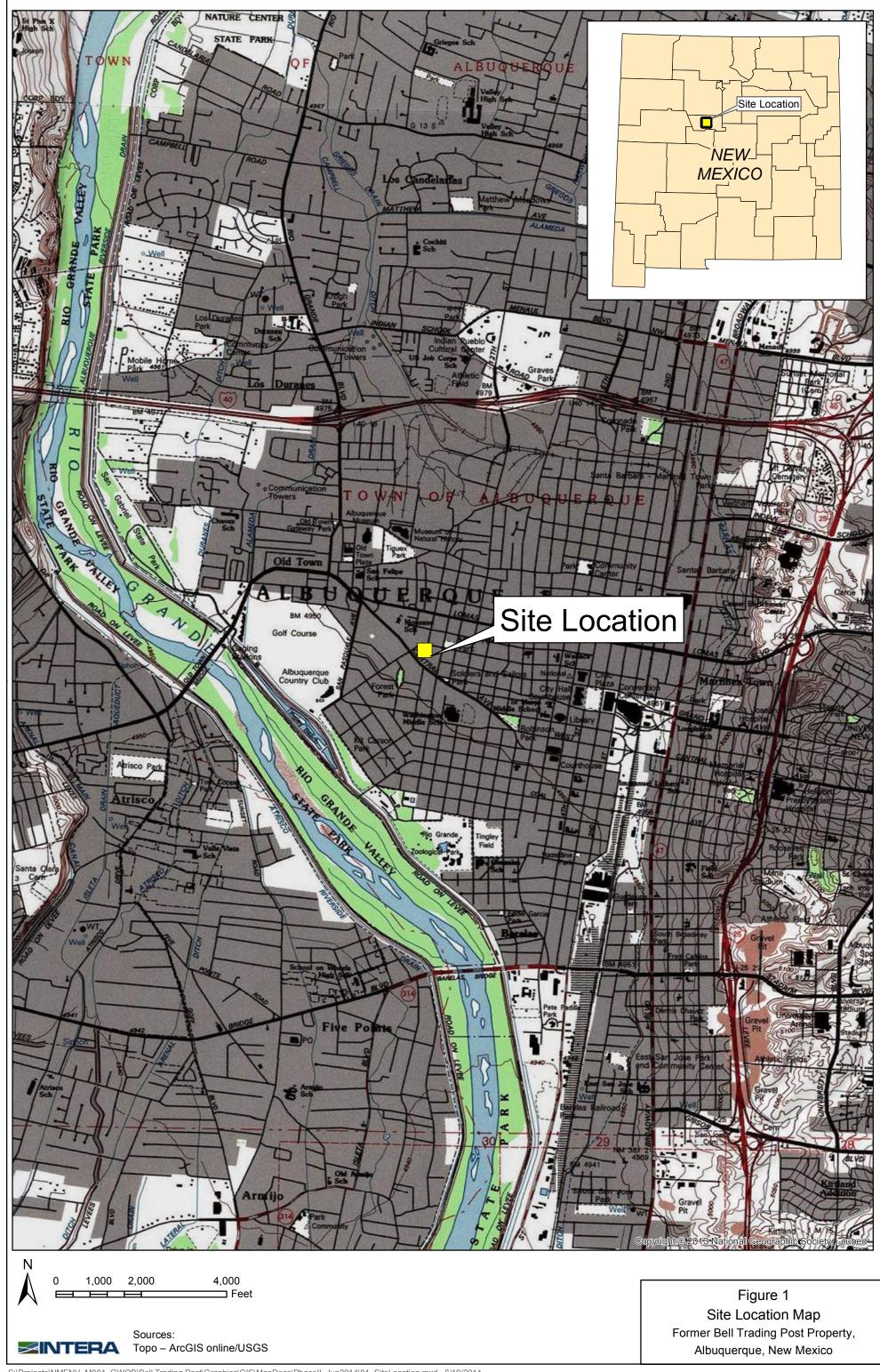


• Conduct air sampling within occupied areas of the Site building and the Site building crawlspace quarterly for a period of at least one year to generate a baseline for the evaluation of potential seasonal influences to indoor air quality and to address any future concerns regarding air quality at the Site.

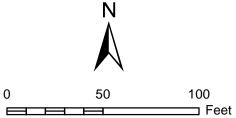
18




#### 6.0 REFERENCES


- Bjorklund, L. J., and B. W. Maxwell, 1961. Availability of Ground Water in the Albuquerque Area, Bernalillo and Sandoval Counties, New Mexico, New Mexico State Engineer Technical Report 21.
- California Regional Water Quality Control Board (CRWQCB). 2013. Users Guide: Derivation and Application of Environmental Screening Levels, Interim Final. Prepared by San Francisco Bay Regional Water Quality Control Board. December 23.
- ——. 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater Interim Final, November 2007. Revised May.
- Chamberlin et al. (R. M. Chamberlin, J. M. Gillentine, C. S. Haase, J. W. Hawley, R. P. Lozinsky, and P. S. Mozley), 1992. Hydrogeologic Framework of the Northern Albuquerque Basin, Open-File Report 387, New Mexico Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico, September 1992.
- Duke Engineering & Services (DE&S). 2001. Phase II Site Characterization Report Former Bell Trading Post Property Albuquerque, New Mexico. Prepared for New Mexico Environment Department Groundwater Quality Bureau Voluntary Remediation Program by INTERA Incorporated. November.
- Environmental Protection Agency (EPA). 2014a. EPA regional screening levels (RSLs) Summary Table from <a href="http://www.epa.gov/region9/superfund/prg/index.html">http://www.epa.gov/region9/superfund/prg/index.html</a>. Updated May.
- ———. 2014b. Vapor Intrusion Screening Level (VISL) Calculator User's Guide. Office of Solid Waste and Emergency Response Office of Superfund Remediation and Technology Innovation. December 2013. Updated May.
- ——. 1993. Behavior and Determination of Volatile Organic Compounds in Soil, A Literature Review. Office of Research and Development. May.
- INTERA Incorporated (INTERA). 2014a. Sampling and Analysis/Quality Assurance Project Plan (SAP/QAPP) Limited Phase II Environmental Site Assessment Bell Trading Post Property Albuquerque, Bernalillo County, New Mexico. NMED Organization Code: ENV00189, Contract Number: 12-667-5000-0009, Activity Code: 51573103. Prepared for New Mexico Environment Department Groundwater Quality Bureau Voluntary Remediation Program October 13, 2009. May 6.
- 2014b. Scope of Work and Cost Estimate Limited Phase II Environmental Site Assessment Bell Trading Post Property 1503 Central Avenue NW Albuquerque, New Mexico. Prepared for New Mexico Environment Department Groundwater Quality Bureau Voluntary Remediation Program by INTERA Incorporated. February 3.




- ——. 2005. Voluntary Remediation Completion Report Former Bell Trading Post Facility Albuquerque, New Mexico. Prepared for The City of Albuquerque Metropolitan Redevelopment Agency by INTERA Incorporated. September 28.
- Keers Environmental, 2000. Phase I Environmental Site Assessment, Bell Trading Post & Adjacent Parcels, 1503 Central Avenue NW, Albuquerque, New Mexico, December 18, 2000.
- ——. 1994. Limited Subsurface Investigation at 1503 Central Avenue, NW, Albuquerque, New Mexico, April 26, 1994. Kelley, V. C., 1977. "Geology of Albuquerque Basin, New Mexico, Memoir 33," New Mexico Bureau of Mines & Mineral Resources, a Division of New Mexico Institute of Mining & Technology, Socorro, New Mexico.
- Kelley, V. C., 1977. Geology of Albuquerque Basin, New Mexico, Memoir 33, New Mexico Bureau of Mines & Mineral Resources, a Division of New Mexico Institute of Mining & Technology, Socorro, New Mexico.
- Kernodle et al. (J. M. Kernodle, D. P. McAda, and C. R. Thorn), 1995. Simulation of Ground-Water Flow in the Albuquerque Basin, Central New Mexico, 1901–1994, with Projections to 2020, U.S. Geological Survey Water-Resources Investigations Report 94-4251.
- New Mexico Environment Department (NMED). 2013. Work Plan Request Limited Phase II Environmental Site Assessment for the Bell Trading Post Property Albuquerque: NMED Project Code: ENV00189, Project Activity Code: 51573103, Contract # 12-667-5000-0009. Letter to Mr. Joseph Tracy of INTERA Incorporated from Ms. Pamela E Homer, Acting Program Manager, New Mexico Environment Department (NMED). December 16.
- ———. 2012. Risk Assessment Guidance for Site Investigations and Remediation. New Mexico Environment Department: Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program. June.
- ——. 2004. NMAC 20.6.2, amended September 26.

  <a href="http://www.nmcpr.state.nm.us/nmac/parts/title20/20.006.0002.htm">http://www.nmcpr.state.nm.us/nmac/parts/title20/20.006.0002.htm</a>, accessed March 9, 2014.
- Thorn et al. (C. R. Thorn, D. P. McAda, and J. M. Kernodle), 1993. Geohydrologic Framework and Hydrologic Conditions in the Albuquerque Basin, Central NM, U.S. Geological Survey, Water-Resources Investigation Report 93-4149.
- U.S. Army Corps of Engineers, 1979. Albuquerque Greater Urban Area, Urban Studies Program, Water Supply, Appendix III.









<u>Legend</u>

Previous Soil Sampling Area (basement/crawl space) Source:

Figure 2
Site Map
Former Bell Trading Post Property,
Albuquerque, New Mexico



Albuquerque, New Mexico

FILE: S:\Projects\NMENV\_M001\_GWQB\Bell Trading Post\Graphics\GIS\MapDocs\PhaseII\_Jun2014\03\_SampleLocs.mxd 6/23/2014

Source(s): Aerial - BERNCO website, dated 2012







## TABLE 1

## Relative Percent Difference Analysis Bell Trading Post Property

### Albuquerque, Bernalillo County, New Mexico

| Constituent                | Location/Sample ID | Reported<br>Concentration<br>(µg/m3) | Approximate<br>RPD (%) |
|----------------------------|--------------------|--------------------------------------|------------------------|
| (cis)-1,2-dichloroethene   | SG-02              | 1.9                                  | 18                     |
| (cloy 1,2 diefilereetherie | SG-02DUP           | 1.6                                  |                        |
| (trans)-1,2-dichloroethene | SG-02              | 2.1                                  | 200                    |
| (* , *                     | SG-02DUP           | <5.0                                 |                        |
| 1,1,1-Trichloroethane      | SG-02              | 1.6                                  | 23                     |
|                            | SG-02DUP           | 1.3                                  |                        |
| 1,2,4-Trimethylbenzene     | SG-02              | 19                                   | 200                    |
|                            | SG-02DUP           | <5.0                                 |                        |
| 1,3,5-Trimethylbenzene     | SG-02              | 3.5                                  | 200                    |
|                            | SG-02DUP           | <5.0                                 |                        |
| 1,3-Dichlorobenzene        | SG-02<br>SG-02DUP  | 4.3<br><5.0                          | 200                    |
|                            |                    |                                      |                        |
| 2-Butanone                 | SG-02<br>SG-02DUP  | 70                                   | 41                     |
|                            | SG-02D0P<br>SG-02  | 46<br>20                             |                        |
| 2-Hexanone                 | SG-02DUP           | 7.3                                  | 91                     |
|                            | SG-02D0F           | 20                                   |                        |
| 4-Methyl-2-pentanone       | SG-02DUP           | 9.6                                  | 70                     |
|                            | SG-02              | 400                                  |                        |
| Acetone                    | SG-02DUP           | 320                                  | 21                     |
|                            | SG-02D01           | 11                                   |                        |
| Benzene                    | SG-02DUP           | 10                                   | 5                      |
|                            | SG-02              | 8.7                                  |                        |
| Carbon disulfide           | SG-02DUP           | 11                                   | 21                     |
|                            | SG-02              | 7.7                                  |                        |
| Chloroform                 | SG-02DUP           | 6.8                                  | 12                     |
|                            | SG-02              | 41                                   |                        |
| Ethylbenzene               | SG-02DUP           | 7.8                                  | 136                    |
|                            | SG-02              | 1.3                                  |                        |
| Methylene chloride         | SG-02DUP           | 1.3                                  | 1                      |
|                            | SG-02              | 8.7                                  |                        |
| Naphthalene                | SG-02DUP           | <5.0                                 | 200                    |
| 5."                        | SG-02              | 1.5                                  |                        |
| n-Butylbenzene             | SG-02DUP           | <5.0                                 | 200                    |
| - D                        | SG-02              | 2.6                                  | 200                    |
| n-Propylbenzene            | SG-02DUP           | <5.0                                 | 200                    |
| Tatro ablara athara (DEDC) | SG-02              | 12                                   | _                      |
| Tetrachloroethene (PERC)   | SG-02DUP           | 12                                   | 5                      |
| Taluana                    | SG-02              | 67                                   | 0                      |
| Toluene                    | SG-02DUP           | 62                                   | 8                      |
| Trichloroethene (TCE)      | SG-02              | 1,800                                | 0                      |
|                            | SG-02DUP           | 1,800                                |                        |
| Trichlorofluoromethane     | SG-02              | 4.7                                  | 15                     |
| The florolladio fletialle  | SG-02DUP           | 4.1                                  | 10                     |
| m,p-Xylene                 | SG-02              | 200                                  | 189                    |
| III,p-Aylerie              | SG-02DUP           | 5.7                                  | 109                    |
| o-Xylene                   | SG-02              | 82                                   | 194                    |
| O-Aylerie                  | SG-02DUP           | 1.3                                  | 134                    |

#### Notes:

Includes detected constituents only.

Bolding indicates constituent RPD in excess of the recommended 20% (INTERA, 2014a)

< = constituent not detected above RL. RL is reported.

 $\mu g/m^3$  = micrograms per cubic meter

RL = reporting limit



#### TABLE 2

# Detected Constituents in Soil Vapor Bell Trading Post Property Albuquerque, Bernalillo County, New Mexico

|                                              | Concentration (μg/m³) |                          |                       |                        |                        |                     |            |            |                    |                      |            |         |                      |                  |            |                         |              |             |                 |         |                   |                             |         |                       |                        |                            |
|----------------------------------------------|-----------------------|--------------------------|-----------------------|------------------------|------------------------|---------------------|------------|------------|--------------------|----------------------|------------|---------|----------------------|------------------|------------|-------------------------|--------------|-------------|-----------------|---------|-------------------|-----------------------------|---------|-----------------------|------------------------|----------------------------|
| Location/Sample ID                           | Collection Date       | (cis)-1,2-dichloroethene | 1,1,1-Trichloroethane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | 1,3-Dichlorobenzene | 2-Butanone | 2-Hexanone | 4-Isopropyltoluene | 4-Methyl-2-pentanone | Acetone    | Benzene | Bromodichloromethane | Carbon disulfide | Chloroform | Dichlorodifluoromethane | Ethylbenzene | Naphthalene | n-Propylbenzene | Styrene | tert-Butylbenzene | Tetrachloroethene<br>(PERC) | Toluene | Trichloroethene (TCE) | Trichlorofluoromethane | Total Xylenes <sup>¢</sup> |
| EPA VISL <sup>a</sup> (µg/m <sup>3</sup> )   |                       | NaV                      | 52,000                | 73                     | NaV                    | NaV                 | 52,000     | 310        | NaV                | 31,000               | 320,000    | 36      | 7.6                  | 7,300            | 12         | 1,000                   | 110          | 8.3         | 10,000          | 10,000  | NaV               | 420                         | 52,000  | 21                    | 7,300                  | 1,000                      |
| CRWQCB ESL <sup>b</sup> (µg/m <sup>3</sup> ) |                       | 3,700                    | 2,600,000             | NaV                    | NaV                    | NaV                 | 2,600,000  | NaV        | NaV                | 210,000              | 15,000,000 | 420     | 330                  | NaV              | 2,300      | NaV                     | 4,900        | 360         | NaV             | 470,000 | NaV               | 2,000                       | 160,000 | 3,000                 | NaV                    | 52,000                     |
| SG-01                                        | 6/2/2014              | <5.0                     | <5.0                  | 34                     | 10                     | <5.0                | 21         | <5.0       | <5.0               | 19                   | 170        | 14      | <5.0                 | 25               | <5.0       | 1.7J                    | 51           | 4.1J        | 10              | <5.0    | <5.0              | <5.0                        | 140     | <5.0                  | 4.5J                   | 180                        |
| SG-02                                        | 6/2/2014              | 1.9J                     | 1.6J                  | 19                     | 3.5J                   | 4.3J                | 70         | 20         | <5.0               | 20                   | 400E       | 11      | <5.0                 | 8.7              | 7.7        | <5.0                    | 41           | 8.7         | 2.6J            | <5.0    | <5.0              | 12                          | 67      | 1,800E                | <5.0                   | 280                        |
| SG-03                                        | 6/2/2014              | <5.0                     | <5.0                  | 14                     | 7.3                    | 5.8                 | <5.0       | <5.0       | 33                 | 9.2                  | 85         | 7.7     | 5.4                  | 4.8J             | 29         | 2.3J                    | 12           | 5.4         | 2.1J            | 2.7J    | 1.6J              | 1.5J                        | 28      | 11                    | 4.1J                   | 54                         |
| SG-04                                        | 6/2/2014              | <5.0                     | <5.0                  | <5.0                   | <5.0                   | 1.9J                | <5.0       | <5.0       | <5.0               | <5.0                 | 57         | 3.9J    | <5.0                 | 12               | <5.0       | 2.5J                    | <5.0         | <5.0        | <5.0            | <5.0    | <5.0              | <5.0                        | 51      | <5.0                  | 3.0J                   | <10                        |
| SG-05                                        | 6/2/2014              | <5.0                     | <5.0                  | 5.0J                   | <5.0                   | 3.4J                | <5.0       | <5.0       | <5.0               | <5.0                 | 73         | 4.0J    | <5.0                 | 3.4J             | <5.0       | 3.3J                    | 2.7J         | 3.5J        | <5.0            | 1.3J    | <5.0              | <5.0                        | 11      | 14                    | 4.7J                   | 8.7J                       |

#### Notes:

**Bolding** indicates constituent detected in excess of the recommended standard/guidance.

Italics indicates constituent detected and no recommended standard/guidance to address vapor intrusion concerns currently exists.

With the exception of total xylenes, the RL for all reported constituents is  $5.0 \,\mu\text{g/m}^3$ ; the RL for total xylenes is  $10.0 \,\mu\text{g/m}^3$ .

a =EPA VISL calculated based on a default residential land use scenario and a total target risk for carcinogens of 10<sup>-5</sup> (EPA, 2014).

b = Tier 1 CRWQCB ESL for soil vapor based on a default residential land use scenario (CRWQCB, 2013). Adjusted for carcinogens to represent a total target cancer risk of 10<sup>-5</sup>.

c =Total xylenes calculated as the sum of the detected constituents: m,p-Xylene and o-Xylene. If one or more constituents are not detected then half the detection limit is used.

< = constituent not detected above RL. RL is reported.

NaV = not available.

μg/m<sup>3</sup> = micrograms per cubic meter

CRWQCB = California Department of Toxic Substances Control/Regional Water Quality Control Board

E = constituent detected above method quantitation range

EPA = U.S. Environmental Protection Agency

ESL = environmental screening level

J = constituent detected below quantitation limit (RL)

VISL = vapor intrusion screening level

RL = reporting limit



#### TABLE 3

# Detected Constituents in Air Bell Trading Post Property Albuquerque, Bernalillo County, New Mexico

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentration (µg/m³) |                                   |      |                         |              |            |               |              |                               |                            |               |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|------|-------------------------|--------------|------------|---------------|--------------|-------------------------------|----------------------------|---------------|--|--|--|--|
| Location/Sample ID                           | eped opition of the perfect of the p |                       | P-Dibromoethan DB) P-Dichlorobenz |      | Carbon<br>tetrachloride | Chloroethane | Chloroform | Chloromethane | Ethylbenzene | Tetrachloroethylene<br>(PERC) | Trichloroethylene<br>(TCE) | Vinyl acetate |  |  |  |  |
| EPA RSL <sup>a</sup> (µg/m3)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                  | 2.55                              | 3.60 | 4.68                    | 10,429       | 1.22       | 93.9          | 11.2         | 41.7                          | 2.09                       | 209           |  |  |  |  |
| CRWQCB ESL <sup>b</sup> (µg/m <sup>3</sup> ) | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.21                  | 0.84                              | 0.58 | 31,286                  | 4.59         | 93.9       | 9.7           | 4.1          | 5.93                          | NaV                        |               |  |  |  |  |
| 1406074-001A AIR-O-01                        | 6/2/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.15                 | <0.12                             | 0.38 | 0.50                    | <0.11        | <0.097     | 0.85          | 0.31         | 0.31                          | 0.11                       | <0.070        |  |  |  |  |
| 1406074-002A AIR-I-01                        | 6/2/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.15                 | 0.12                              | 0.64 | 0.50                    | <0.11        | 0.58       | 0.91          | 0.95         | 0.19                          | 0.21                       | <0.070        |  |  |  |  |
| 1406074-003A AIR-I-02                        | 6/2/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.15                 | <0.12                             | 0.70 | 0.47                    | 0.20         | 0.58       | 1.1           | 1.3          | 0.18                          | 0.64                       | <0.070        |  |  |  |  |
| 1406074-004A AIR-C-01                        | 6/2/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.15                 | <0.12                             | 1.2  | 0.52                    | <0.11        | 1.5        | 1.1           | 6.1          | 18                            | 3.1                        | 0.23          |  |  |  |  |
| 1406074-005A AIR-C-02 6/2/20                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.15                 | <0.12                             | 0.57 | 0.54                    | <0.11        | 1.7        | 0.91          | 1.9          | 0.41                          | 2.5                        | <0.070        |  |  |  |  |

#### Notes:

**Bolding** indicates constituent detected in excess of the recommended standard/guidance.

#### Shaded cells indicate the RL exceeds the standard/guidance.

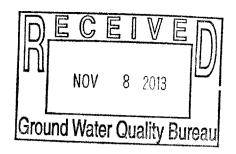
a =EPA RSL for indoor air. Calculated based on a default residential land use scenario and a total target risk for carcinogens of 10<sup>-5</sup> (EPA, 2014).

b = Tier 1 CRWQCB ESL for indoor air based on a default residential land use scenario (CRWQCB, 2013). Adjusted for carcinogens to represent a total target cancer risk of 10-5.

< = constituent not detected above RL. RL is reported.

NaV = not available.

 $\mu g/m^3 = micrograms per cubic meter$ 


EPA = U.S. Environmental Protection Agency

RSL = regional screening level

RL = reporting limit



Appendix A Access Agreement



Pamela Homer
Acting Program Manager
Remediation Oversight Section
PO Box 5469
Santa Fe, NM 87502-5469

October 31, 2013

Re: Brownfields Assistance for Bell Trading Post Property

1503 Central Avenue NW, Albuquerque, New Mexico 87104

#### Dear Pamela,

This is a request for assistance through the NMED Brownfields Program for investigation and assessment of property located at 1503 Central Avenue NW in Albuquerque, New Mexico. Based on previous environmental studies of the property, FHDC is hereby requesting assistance through NMED in conducting further site investigation and assessment activities to address potential indoor air impacts.

Thank you for your consideration of this request.

Respectfully submitted

Rick Davis President

**Family Housing Development Corporation** 



SUSANA MARTINEZ Governor

JOHN A. SANCHEZ Lieutenant Governor

## NEW MEXICO ENVIRONMENT DEPARTMENT

# Ground Water Quality Bureau

Harold Runnels Building
1190 South St. Francis Drive (87505)
P.O. Box 5469, Santa Fe, New Mexico 87502-5469
Phone (505) 827-2900 Fax (505) 827-2965
www.nmenv.state.nm.us



RYAN FLYNN Secretary-Designate

BUTCH TONGATE Deputy Secretary

#### **CONSENT FOR ACCESS TO PROPERTY**

| NAME OF PROPERTY OWNER: Rick Davis                                                                                                                                                                                                            |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DESCRIPTION OF PROPERTY (type of property & address): Residential Condominium                                                                                                                                                                 | S   |
| 1503 Central Avenue NW, Albuquerque, WM 87104                                                                                                                                                                                                 |     |
| hereby give my consent and authorization to the New Mexico Environment Department (NMED), its contractor and subcontractors, to enter the property described above in order to conduct environmenta assessment activities, which may include: | I   |
| <ol> <li>Collecting samples of surface and subsurface soil, soil vapor, ground and surface water,<br/>air, building materials, waste materials, and solids or liquids stored or disposed of at the<br/>property;</li> </ol>                   |     |
| <ol> <li>Documenting scientific and engineering observations, including but not limited to taking<br/>notes, making recordings, taking photographs, measuring and surveying;</li> </ol>                                                       |     |
| <ol> <li>Drilling and finishing boreholes for the purposes of collecting soil, soil vapor, and/or grouwater samples; and</li> </ol>                                                                                                           | nd  |
| <ol> <li>Other actions at the property as may be necessary to determine the nature, extent and<br/>potential threat to human health and the environment of contaminants at the site.</li> </ol>                                               |     |
| À I am the property owner.                                                                                                                                                                                                                    |     |
| ☐ I am a representative of the property owner with authorization to sign this access agreement.                                                                                                                                               |     |
| Signature:                                                                                                                                                                                                                                    |     |
| Printed Name: Rick Davis Title: President                                                                                                                                                                                                     |     |
| Address: PO Bax 91525 Albuguergu, NM 87199                                                                                                                                                                                                    |     |
| Telephone Number(s): Home: Work: 873-9638 Cell: 565-259-0                                                                                                                                                                                     | 735 |
| Email: <u>rick@rdawisCompanies.com</u>                                                                                                                                                                                                        |     |

Appendix B Site Photo Log



Photo 1: View of the Site's northwest entrance from inside gated parking lot, facing north towards Laguna Blvd and Roma Ave intersection.



Photo 2: Proposed soil gas sampling location SG-02. Location SG-02 was bored approximately 4 ft from the gate on the opposite side, approximately 1 ft from the curb.



Photo 3: Proposed soil gas sampling location SG-03. The presence of telecommunication lines required Location SG-03 to be adjusted slightly to the east (left in picture).



Photo 4: Proposed soil gas sampling location SG-03, just east of telecommunication lines. Location SG-03 was drilled through the sidewalk, approximately 1 ft from the evergreen tree pictured in the center.



Photo 5: Site Building Crawlspace.



Photo 6: Site Building Crawlspace. Note small excavation area around one of the crawlspace piers, exposing unconsolidated material to approximately 1.5 ft deep.



Photo 7: Operational humistat installed to control crawlspace air flow and humidity within the Site Building crawlspace. Typically, humidity levels were set at 45%. Note: System was turned off for the duration execution of air sampling.



Photo 8: Final Soil Vapor Sample Location SG-03.



Photo 9: Soil Vapor Sample Equipment.



Photo 10: Soil gas sampling at Location SG-02. Annular space sealed with inflated nitrile gloves to help ensure airtight seal between subsurface and drill pipe was maintained during vapor extraction.

Appendix C
Field Forms and Notes

130 Capital Drive, Suite C Golden, CO 80401-5654 Phone: 303-277-1694 Fax: 303-278-0104

| PAGE:        | OF      | 5    |           |  |
|--------------|---------|------|-----------|--|
| DATE / TIME: | 6/2/    | (4   |           |  |
| PROJECT: 1   | ell-Tre | wing | Post      |  |
| JOB NO. :    |         |      |           |  |
| REC / SAMP E | BY: C   | 516  | <i>21</i> |  |

| WELL/LOC. N                      | 0. :                  | WELL TY             | /PE:                                             |              | Monitor                                            |                                                      | Extraction              |              | PRT Sys.                                     | æ                                                | Other                   |
|----------------------------------|-----------------------|---------------------|--------------------------------------------------|--------------|----------------------------------------------------|------------------------------------------------------|-------------------------|--------------|----------------------------------------------|--------------------------------------------------|-------------------------|
| 5a-0                             | , <u>}</u>            | WELL MA             | ATERIA                                           | L: O         | PVC                                                | Ŗ                                                    | Teflon                  |              | Other                                        |                                                  |                         |
|                                  |                       |                     |                                                  |              |                                                    |                                                      |                         |              |                                              |                                                  |                         |
|                                  |                       | WE                  | LL OR                                            | PRT PU       | RGING                                              | & SAMP                                               | LING LC                 | )G           |                                              |                                                  |                         |
| PURGE VOI                        |                       |                     |                                                  | <del></del>  |                                                    |                                                      | G METH                  | 0D           |                                              | <u></u>                                          | <del></del>             |
| Casing/Tubi                      |                       |                     | -L []                                            | 1 Inch       |                                                    | □ Landte                                             |                         |              |                                              |                                                  |                         |
| □ 1/4-inch<br>风 Other <u>- 3</u> | ⊔ 1/2-mui<br>/ھِاٰ    | ı ⊔ <i>5</i> /4-ini | cn _                                             | 1-incii      |                                                    | □ Penso<br>☑ Other                                   | altic pump<br>- Type: 🕏 | 'ID/C        | F1                                           |                                                  |                         |
| Total Lengti                     | h of Tubing           | /Casing:_           | 4                                                |              |                                                    | 77                                                   | - Type: 🖺               | <del></del>  | 1                                            |                                                  |                         |
| Number of \                      | Well Volum            | as to be P          | urged (                                          | # Vols):     |                                                    | Well                                                 | l Depth:                | <u> </u>     | <u>'                                    </u> | •                                                |                         |
|                                  |                       |                     |                                                  |              |                                                    |                                                      |                         |              |                                              |                                                  |                         |
| PURGE VOI                        | LUME CALC             | ULATIO              | N:                                               |              | Volume/ft ><br>Tubing / h                          |                                                      |                         | je Volume    | es) =                                        | c                                                | C or Liters             |
| PURGE TIM                        | 7E                    | <del></del>         |                                                  | (110101 12   | PURGE                                              |                                                      |                         |              | ACTUAL                                       | DIIRGE '                                         | VOLUME                  |
| O() START                        | 16<br>r 1012 sta      | np 2                | FLAPSEC                                          | <b>)</b>     | Initial                                            |                                                      | Final                   | L/or         | -                                            | FUNGE                                            | Liters                  |
| 1-10                             | <u> </u>              | -                   |                                                  | ,            | 3,,,,,,                                            | <b>7</b>                                             |                         |              |                                              |                                                  |                         |
| FIELD PAR                        | AMETER M              | EASURE              | MENT                                             |              |                                                    | Co                                                   | Has                     | LEL          | ٥z                                           | _                                                |                         |
| Time                             | Minutes               | FLOW                | Vacuum                                           | PID          | FID                                                | CH4                                                  | GO2                     | 02           | Bal                                          |                                                  |                         |
| 00:00                            |                       | L/min               | -                                                | ppm          | ppm                                                | %                                                    | %                       | %            | %                                            |                                                  |                         |
| 1010                             | ٥                     | 6.2                 |                                                  | 2 . 2.       |                                                    | 87                                                   | Ö                       | 0            | 20,4                                         |                                                  |                         |
| 1010:30                          | 1/2                   |                     | <u></u>                                          | 1.3          |                                                    |                                                      | Automy,                 |              |                                              | <u> </u>                                         |                         |
| 1011                             |                       | +-+                 | <del>                                     </del> | 11:3         |                                                    | BIEN                                                 |                         | 0            |                                              |                                                  |                         |
| 1011:30                          | 125                   | +                   | <b></b>                                          | <u> </u>     | +                                                  | 2_                                                   | 0                       |              | 20.2                                         | ļ                                                |                         |
| 1012                             | \ <u>'~</u>           | +                   | ┼                                                | 1-           | +                                                  |                                                      | 0                       | <u> </u>     | 20.2                                         | <b>{</b>                                         |                         |
| ++>CHS                           | <del> </del>          | <del> </del>        | <del> </del>                                     | <del> </del> | <del> </del>                                       | <b></b>                                              |                         | <del> </del> |                                              |                                                  |                         |
|                                  | <b></b>               | +                   | <del> </del>                                     | +            | <del> </del>                                       |                                                      |                         |              |                                              | <del>                                     </del> |                         |
| Observation                      |                       | <del></del>         | <u>-</u>                                         | <u></u>      | <u></u>                                            | <del></del>                                          | <u> </u>                |              |                                              | <u> </u>                                         |                         |
| Voger voc.                       | 12/110141             |                     |                                                  |              |                                                    |                                                      |                         |              |                                              |                                                  |                         |
|                                  |                       |                     |                                                  |              |                                                    |                                                      |                         |              |                                              |                                                  |                         |
|                                  |                       |                     |                                                  |              |                                                    |                                                      |                         |              |                                              |                                                  |                         |
|                                  |                       |                     |                                                  |              |                                                    |                                                      |                         |              |                                              |                                                  |                         |
|                                  |                       |                     |                                                  |              |                                                    |                                                      |                         |              |                                              |                                                  |                         |
|                                  |                       |                     |                                                  | SAMP         | LE COLLE                                           | CTION                                                |                         |              |                                              |                                                  |                         |
| SAMPLE CO                        | NTAINER T             | YPE                 |                                                  |              |                                                    |                                                      |                         |              |                                              |                                                  |                         |
| □ Tedlar Ba                      |                       | N .                 | tion Tube                                        | es           | □ Sumn                                             | na Caniste                                           | :г                      | □ Sept       | um Bottle                                    |                                                  |                         |
|                                  | •                     | / '                 |                                                  |              |                                                    | - <b>.</b>                                           |                         | •            |                                              |                                                  |                         |
| SAMPLES                          | · · • · • · • · • · • | Tata-in             |                                                  | 1            | Sample S                                           | · · · · · · · · · · · · · · · · · · ·                | T.,_,,                  | Q            | 1-6-5                                        | T                                                |                         |
| Sample/Loc<br>249 4              |                       | Contain<br>SG-0     |                                                  | Date<br>6(Z  | Time<br>1073                                       | Depth                                                | Volume                  | 0.2          | 1028                                         | Commer                                           | its                     |
| 2494                             |                       |                     |                                                  |              | 11005                                              | <del>  &gt;                                   </del> | <del> </del>            | 0.~          | 1020                                         | ┼──                                              | اشتنان                  |
| 474                              | 71                    | tras                | <u> </u>                                         | 6/2          |                                                    | <del> </del>                                         | <del></del>             | ļ            |                                              |                                                  | · Company of the second |
|                                  | <b></b>               | <del></del>         | ┼                                                |              | <b>_</b>                                           | <u> </u>                                             | <del> </del>            | ╀            | <del> </del>                                 | <del> </del>                                     | <u> </u>                |
|                                  | <b></b>               | <del></del>         | <del> </del>                                     |              |                                                    | <u> </u>                                             | ļ                       | <u> </u>     |                                              | <b>_</b>                                         | <b> </b>                |
|                                  |                       |                     | <u> </u>                                         |              |                                                    | <u> </u>                                             | <u> </u>                | <u> </u>     |                                              | <u> </u>                                         |                         |
|                                  | <u> </u>              |                     |                                                  |              |                                                    |                                                      |                         | <u> </u>     |                                              | <u> </u>                                         |                         |
|                                  |                       | T                   | T                                                | T            |                                                    |                                                      | Π                       |              | T                                            |                                                  |                         |
|                                  |                       |                     |                                                  |              | ~~ <del>]</del> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | +                                                    |                         | +            |                                              | ***************************************          | <del></del>             |

130 Capital Drive, Suite C Golden, CO 80401-5654 Phone: 303-277-1694 Fax: 303-278-0104

| PAGE:     | 2       | OF   | _, S |   |      |  |
|-----------|---------|------|------|---|------|--|
| DATE / TI | ME: (ه) | (21  | 14   |   |      |  |
| PROJECT:  | ٠. ٠    |      |      |   | <br> |  |
| JOB NO. : |         |      |      |   |      |  |
| REC / SAN | 4P BY:  | 6.51 | PR   | ( |      |  |

| WELL/LOC. N                             |                                       | WELL TY                                           | PE:                             |                                       | Monitor  |                                       | Extraction |            | PRT Sys. | K                                       | Other                                 |     |
|-----------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------|---------------------------------------|----------|---------------------------------------|------------|------------|----------|-----------------------------------------|---------------------------------------|-----|
| 89-Ø                                    | 2                                     | WELL M                                            |                                 | Other                                 |          |                                       |            |            |          |                                         |                                       |     |
|                                         |                                       |                                                   |                                 |                                       |          |                                       |            | ·          |          |                                         |                                       |     |
|                                         |                                       | WE                                                | LLOR                            | PRT PUI                               | RGING .  | & SAMP                                | LING LO    | G          |          |                                         |                                       |     |
| PURGE VOL                               | IIME                                  |                                                   |                                 |                                       |          |                                       | G METHO    |            |          |                                         |                                       |     |
| Casing/Tubi                             |                                       | ameter:                                           |                                 |                                       |          | □ Landte                              |            |            |          |                                         |                                       |     |
| Ni 1/4-inch                             | □ 1/2-inch                            | □ 3/4-in                                          | ch 🗆                            | 1-inch                                |          | □ Pariets                             | itic numn  | è          | <b></b>  |                                         |                                       |     |
| Other                                   |                                       | •                                                 | 1.1                             |                                       |          | Ĵ <b>X</b> Other                      | - Type:∮   | 1019       | 001      |                                         |                                       |     |
| Total Length                            | of Tubing                             | Casing:_                                          | 4.                              |                                       |          | ( )                                   |            | 7          | , I.,    |                                         |                                       |     |
| Other<br>Total Length<br>Number of V    | Vell Volume                           | s to be P                                         | urged (                         | # Vols):                              |          | Well                                  | l Depth: _ | <u>So'</u> | · r      |                                         |                                       |     |
|                                         |                                       |                                                   |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
| *                                       | 110,111,111                           |                                                   |                                 | •                                     |          |                                       |            |            |          |                                         |                                       |     |
| PURGE VOL                               | UME CALC                              | ULATIO                                            | N:                              |                                       |          |                                       | X (# Purge | e Volume   | s) =     | co                                      | C or Liter                            | rs  |
|                                         | (Refer to Tubing / Hole Volume Table) |                                                   |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
| PURGE TIM                               |                                       |                                                   |                                 |                                       | PURGE    |                                       |            |            |          | PURGE                                   | VOLUM                                 | E   |
| START                                   | STO                                   | Ρ                                                 | ELAPSED Initial L/pm Final L/pm |                                       |          |                                       |            |            |          |                                         |                                       | rs  |
|                                         |                                       |                                                   |                                 |                                       |          | · · · · · · · · · · · · · · · · · · · |            |            |          |                                         |                                       |     |
| FIELD PAR                               | AMETER M                              | EASURE                                            | MENT                            |                                       |          | <u>ය</u>                              | #25        | IEL        | 00       |                                         |                                       |     |
| Time                                    | Minutes                               | FLOW                                              | Vacuum                          | PID                                   | FID      | CH4                                   | -co2       | 02         | Bal      |                                         |                                       |     |
| 00:00                                   |                                       | L/min                                             | ļ                               | ppm                                   | ppm      | %                                     | %          | %          | %        |                                         |                                       |     |
| (132                                    | <u>(D)</u>                            | 0,2                                               |                                 | 3.2                                   | 1        | . ^                                   | -          | _          | _        |                                         |                                       |     |
| 1133                                    | <u> </u>                              |                                                   |                                 | لللا                                  |          | -                                     | -          | <i></i>    |          |                                         |                                       |     |
| 1134                                    | 2                                     | $\vdash$                                          |                                 | 0.8                                   |          | <del></del>                           |            |            |          |                                         |                                       |     |
| 1135                                    |                                       |                                                   |                                 | 0.6                                   |          | 4                                     |            | ್ರ         | 19.8     |                                         |                                       |     |
| 1136                                    | 4                                     | <del>  \</del>                                    |                                 |                                       | <b></b>  | <u>(8)</u>                            | 2          | 3_         | 198      | .,                                      |                                       |     |
| 1137                                    | 5                                     | <u>~</u>                                          |                                 |                                       |          | 7-                                    | 2          | <u>s</u>   | 12.8     |                                         |                                       |     |
|                                         |                                       | <del> </del>                                      |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
|                                         | 40. 4                                 | 1                                                 | L                               | Į                                     | L        | <u> </u>                              |            |            |          |                                         |                                       |     |
| Observation                             | s/Note:                               |                                                   |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
|                                         |                                       |                                                   |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
|                                         |                                       |                                                   |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
|                                         |                                       |                                                   |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
|                                         |                                       |                                                   |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
| *************************************** |                                       | <u>OLIOCEPER CONTRACTO</u>                        |                                 |                                       | F 00111  |                                       |            |            |          |                                         | · · · · · · · · · · · · · · · · · · · |     |
|                                         |                                       | 7 <u>03-03-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-</u> |                                 | SAMPL                                 | E COLLI  | ECITON                                |            |            |          | *************************************** |                                       |     |
| SAMPLE CON                              | TAINER TY                             | /PE                                               |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
| □ Tedlar Bad                            | 5                                     | Sornt                                             | ion Tube                        | s                                     | □ Sumn   | na Caniste                            | r          | ☐ Septu    | m Bottle |                                         |                                       |     |
| _                                       | •                                     | 7(33.71                                           |                                 | _                                     |          |                                       | •          |            |          |                                         |                                       |     |
| SAMPLES                                 |                                       | ,<br>                                             |                                 | · · · · · · · · · · · · · · · · · · · | Sample S | Series:                               |            |            |          | ·                                       |                                       |     |
| Sample/Loc                              | ation ID                              | Contain                                           |                                 | Date                                  | Time     | Depth                                 | Volume     | Q          |          | Commen                                  | its                                   |     |
| 2494                                    |                                       | 56-0                                              |                                 | 6/2                                   | 1140     | 30"                                   |            | 0.7        | 1145     | <b>DU</b>                               |                                       |     |
| 5494                                    | 80                                    | SG-                                               | 02                              | 612                                   | 1147     | 301                                   | 11         | 0.2        | 1147     | ل ځو√                                   | MIS                                   | ONS |
|                                         |                                       | 1                                                 |                                 | /                                     |          |                                       |            |            |          |                                         |                                       |     |
|                                         |                                       |                                                   |                                 |                                       |          |                                       |            |            |          |                                         |                                       |     |
|                                         |                                       | 1                                                 |                                 | 1                                     |          | 1                                     |            |            |          |                                         |                                       |     |

130 Capital Drive, Suite C Golden, CO 80401-5654 Phone: 303-277-1694 Fax: 303-278-0104 PAGE: 3 OF 5

DATE / TIME: 4 OF 1 (4)

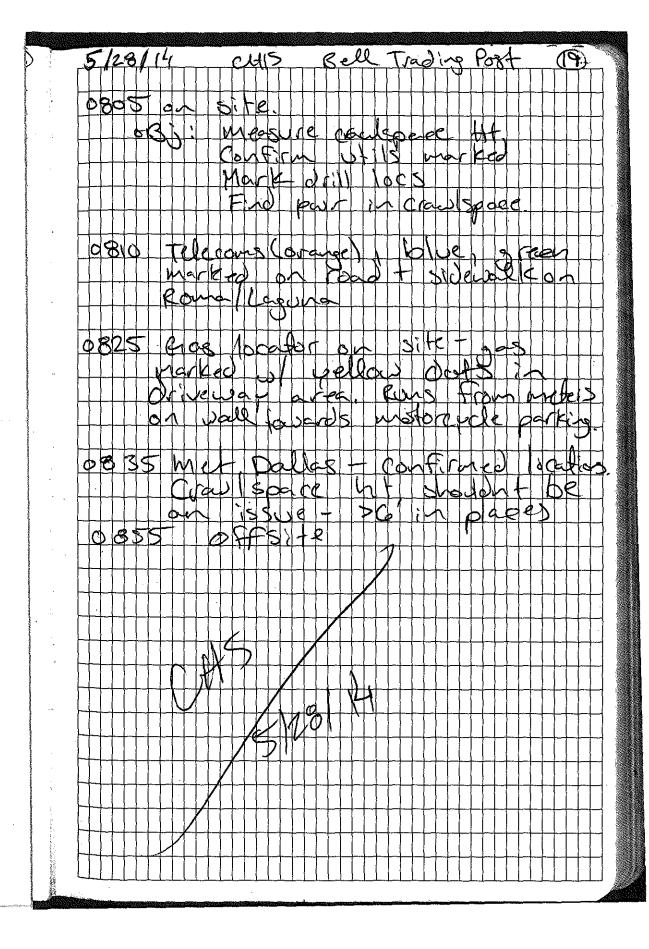
PROJECT:

JOB NO.:

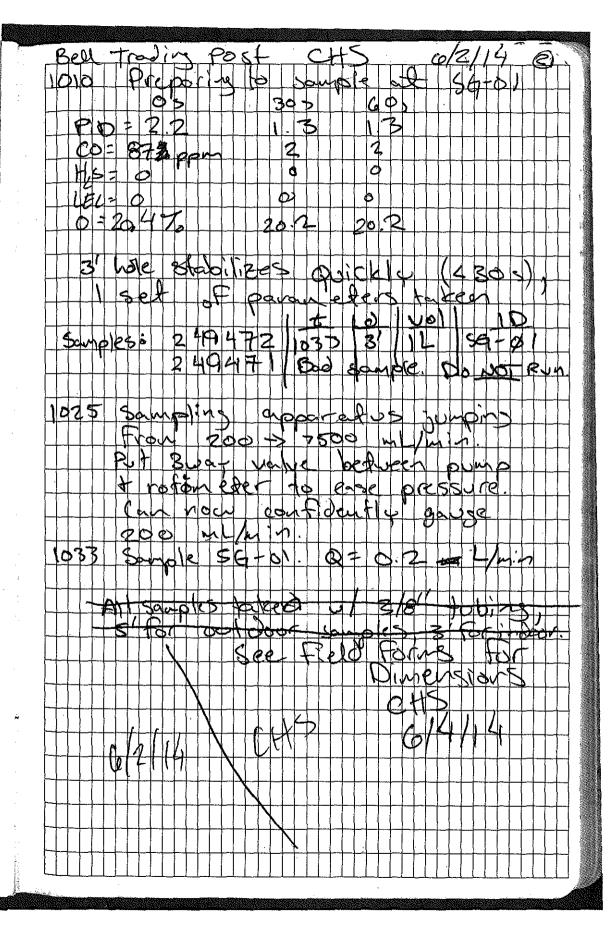
REC / SAMP BY: C. 5 (4)

| WELL/LOC. N                             | _                                            | WELL TY                                          | PE:          | 0                                                | Monitor                                          | Đ                                                | Extraction                                       | , –               | PRT Sys.                                         | A                                                | Other       |  |  |
|-----------------------------------------|----------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------|--------------------------------------------------|--------------------------------------------------|-------------|--|--|
| SG-9                                    | 3                                            | WELL MATERIAL: □ PVC ▼ Poly / Implant □ Teflon   |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  | Other       |  |  |
|                                         |                                              |                                                  |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |             |  |  |
|                                         |                                              | WE                                               | LL OR        | PRT PU                                           | RGING                                            | & SAMP                                           | LING LO                                          | )G                |                                                  |                                                  |             |  |  |
| PURGE VO                                | LUME                                         |                                                  |              |                                                  |                                                  | PURGIN                                           | G METH                                           | OD                |                                                  |                                                  | ···         |  |  |
| Casing/Tub                              |                                              |                                                  |              |                                                  |                                                  | □ Landte                                         |                                                  |                   |                                                  |                                                  |             |  |  |
| 1/4-inch                                | □ 1/2-inch                                   | □3/4-in                                          | ch ឆ         | 1-inch                                           |                                                  | □ Perista                                        | altic pump                                       | \/                | ACT                                              |                                                  |             |  |  |
| Other                                   |                                              |                                                  | 111          |                                                  |                                                  | )X Other                                         | - Type:                                          | 5117/ (           | 091                                              |                                                  |             |  |  |
| Total Lengti                            | h of Tubing,                                 | /Casing:_                                        |              |                                                  |                                                  | ,                                                |                                                  | 5/                |                                                  |                                                  |             |  |  |
| 1/4-inch Other Total Lengti Number of \ | Well Volume                                  | es to be P                                       | urged (      | # Vols):                                         |                                                  | _ Wel                                            | l Depth:                                         | ِ ک               |                                                  |                                                  |             |  |  |
|                                         |                                              |                                                  |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  | *********** |  |  |
| PURGE VOI                               | LUME CALC                                    | IOITALU                                          | N:           |                                                  |                                                  | x length)<br>Hole Volun                          |                                                  | je Volume         | 25) =                                            | C                                                | C or Liters |  |  |
| PURGE TIM                               | IGE TIME PURGE RATE ACTUAL PU                |                                                  |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |             |  |  |
| 735 START                               | START ZZSTOP ELAPSED Initial L/pm Final L/pm |                                                  |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |             |  |  |
| FIELD PAR                               |                                              |                                                  |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |             |  |  |
|                                         |                                              |                                                  |              |                                                  |                                                  | <u> co</u>                                       |                                                  |                   |                                                  |                                                  |             |  |  |
| Time                                    | Minutes                                      | FLOW                                             | Vacuum       | PID                                              | FID                                              | GH4                                              | <b>- €02</b><br>%                                | <del>- 02</del> - | Bal%                                             |                                                  |             |  |  |
| 00:00                                   | <i>E</i> >                                   | L/min                                            |              | ppm                                              | ppm                                              | _%                                               |                                                  |                   | 70                                               |                                                  |             |  |  |
| 236                                     | <u> </u>                                     | 60                                               |              | 1.0                                              | <del>                                     </del> | <u> </u>                                         |                                                  |                   |                                                  |                                                  |             |  |  |
| 1479                                    | 2                                            | <del> </del>                                     |              | 0                                                | <del></del>                                      | <del>                                     </del> | 2                                                |                   | 20.3                                             |                                                  |             |  |  |
| 1538                                    | 3                                            |                                                  |              | -                                                | <del>-  -</del>                                  | 3                                                |                                                  | <u> </u>          | 20.2                                             |                                                  |             |  |  |
|                                         |                                              | <del>                                     </del> |              |                                                  |                                                  | 1                                                | !                                                | 0                 | 20.2                                             |                                                  |             |  |  |
|                                         |                                              | <u> </u>                                         |              |                                                  |                                                  | <del> </del>                                     |                                                  |                   |                                                  |                                                  |             |  |  |
|                                         |                                              |                                                  |              |                                                  | -                                                | <del> </del>                                     | <b></b>                                          |                   |                                                  |                                                  |             |  |  |
|                                         |                                              | <del> </del>                                     |              |                                                  | <del></del>                                      | 1                                                |                                                  |                   |                                                  |                                                  |             |  |  |
| Observation                             | c /Note:                                     |                                                  | L            |                                                  | <del>-                                    </del> |                                                  |                                                  | <u>'</u>          | <del></del>                                      | L                                                |             |  |  |
| Observation                             | is/ <del>N</del> ote:                        |                                                  |              |                                                  | and a                                            |                                                  |                                                  |                   |                                                  |                                                  |             |  |  |
|                                         |                                              |                                                  |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |             |  |  |
|                                         |                                              |                                                  |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |             |  |  |
|                                         | ***                                          |                                                  |              |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |             |  |  |
|                                         |                                              |                                                  |              | SAMP                                             | E COLL                                           | ECTION                                           |                                                  |                   |                                                  |                                                  |             |  |  |
| SAMPLE COI                              | NTAINER TY                                   | /PE                                              |              |                                                  |                                                  |                                                  |                                                  | , —               |                                                  |                                                  |             |  |  |
| □ Tedlar Ba                             |                                              | / / ·                                            | ion Tube     | s                                                | □ Sum                                            | ma Caniste                                       | r                                                | □ Septu           | ım Bottle                                        |                                                  |             |  |  |
| SAMPLES                                 |                                              |                                                  |              |                                                  | Sample                                           | Series:                                          |                                                  | Union             |                                                  |                                                  |             |  |  |
| Sample/Loc                              | ation ID                                     | Contain                                          | ID           | Date                                             | Time                                             | Depth                                            | Volume                                           | 47%               | £ F                                              | Commer                                           | its         |  |  |
| 2494                                    |                                              | 561-0                                            | 3            | 6/2                                              | 124                                              | 3                                                | 14                                               | 0.2               | 12416                                            |                                                  |             |  |  |
| 2478                                    | 03                                           | 560                                              | 3            | 6/2                                              | 1249                                             | 31                                               | IIL                                              | 0.2               | 1249                                             |                                                  |             |  |  |
|                                         |                                              |                                                  |              | 1                                                |                                                  |                                                  | <u> </u>                                         |                   |                                                  |                                                  |             |  |  |
|                                         |                                              |                                                  | <u> </u>     | <del>                                     </del> | <del>                                     </del> | 1                                                | <del>                                     </del> | <del> </del>      | <del>                                     </del> | <del>                                     </del> |             |  |  |
|                                         |                                              | <del> </del>                                     | <del> </del> | <del> </del>                                     |                                                  | <del>- </del>                                    | <del>                                     </del> | <del> </del>      | <del> </del>                                     |                                                  |             |  |  |
|                                         |                                              | 1                                                |              | L                                                | l                                                |                                                  | 1                                                |                   | <u> </u>                                         | L                                                |             |  |  |

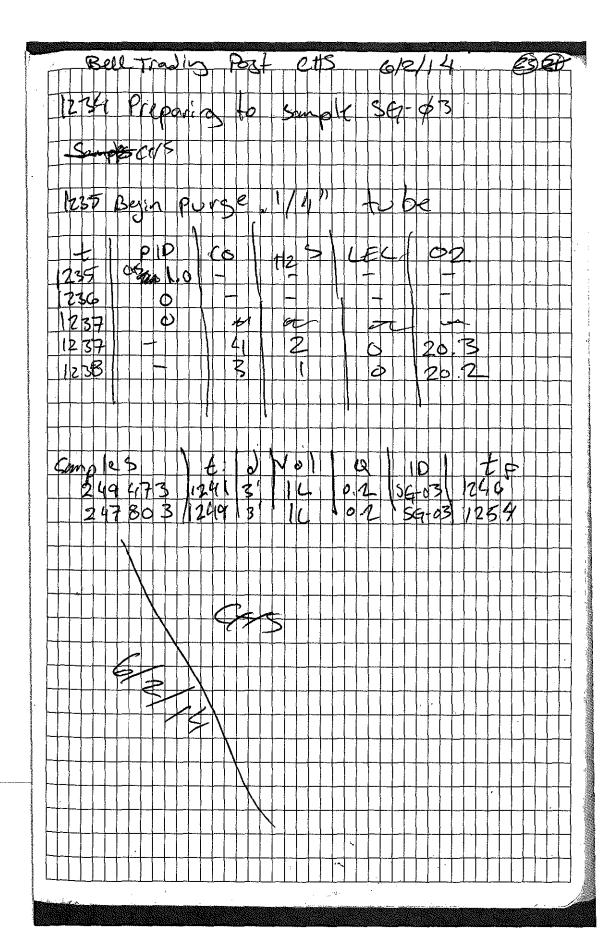
130 Capital Drive, Suite C Golden, CO 80401-5654 Phone: 303-277-1694 Fax: 303-278-0104


| PAGE: 4 OF 5             |
|--------------------------|
| DATE / TIME: 4/2/14      |
| PROJECT:                 |
| JOB NO. :                |
| REC / SAMP BY: A SI-TORT |

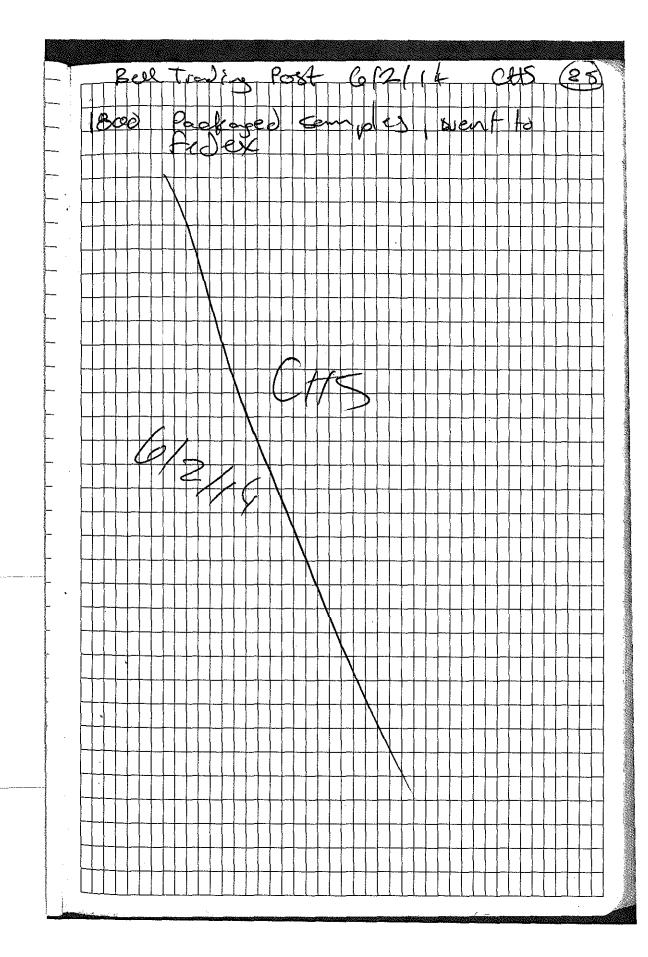
| WELL/LOC. N         |           | WELL TYP                              | E:          |                                                  | Monitor                                          | e e                                              | Extraction                                       |                                                  | PRT Sys.                                         | -4                                               | Other                                            |
|---------------------|-----------|---------------------------------------|-------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 56-0                | <u> ۷</u> | ; 0                                   | PVC         | \$                                               | ₽oly / Imp                                       | lant 🗆                                           | Teflon                                           | D                                                | Other                                            |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  | •                                                |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           | WEL                                   | L OR        | PRT PUI                                          | RGING                                            | & SAMP                                           | LING LO                                          | G                                                |                                                  |                                                  |                                                  |
| URGE VOL            |           |                                       |             |                                                  |                                                  |                                                  | G METH                                           | DD D                                             |                                                  | <del></del>                                      |                                                  |
| asing/Tubi          |           |                                       |             | 4 (                                              |                                                  | □ Landte                                         |                                                  |                                                  |                                                  |                                                  |                                                  |
| 1/4-inch<br>□ Other |           | 1 1 3/4-incr                          | 1 🗀         | 1-incn                                           |                                                  | M Other                                          | altic pump<br>- Type:                            | PIDA                                             | 61                                               |                                                  |                                                  |
| Total Length        |           | /Casing:                              |             |                                                  |                                                  | /-\Odici                                         | · , pc                                           | <del></del>                                      | <del></del>                                      |                                                  |                                                  |
| lumber of V         |           |                                       |             | # Vols):                                         |                                                  | Well                                             | Depth:                                           |                                                  |                                                  | •                                                |                                                  |
|                     |           |                                       |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
| PURGE VOL           | UME CAL   | CULATION                              |             |                                                  |                                                  | k length) :                                      |                                                  | je Volum                                         | es) =                                            | C                                                | C or Liters                                      |
| URGE TIM            | E         |                                       |             |                                                  | PURGE                                            |                                                  |                                                  |                                                  | ACTUAL                                           | PURGE                                            | VOLUME                                           |
|                     |           | OP EI                                 | APSED       |                                                  |                                                  |                                                  | Final ()                                         | 7 Up                                             | m                                                |                                                  |                                                  |
|                     |           |                                       | _ ,,        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
| IELD PAR            | AMETER M  | IEASUREM                              | ENT         |                                                  |                                                  | CO                                               | 1/25                                             | 1=1                                              | B-                                               |                                                  |                                                  |
| Time                | Minutes   | FLOW                                  | Vacuum      | PID                                              | FLD                                              | CH4                                              | -€ <del>02</del>                                 | 02                                               | Bal                                              |                                                  |                                                  |
| 00:00               |           | L/min                                 |             | ppm                                              | pom                                              | %                                                | %                                                | %                                                | %                                                |                                                  |                                                  |
| W37                 | ٥         | 0.7                                   |             | 1.0                                              |                                                  | . ပ                                              | 0                                                | 0                                                | 20.9                                             |                                                  |                                                  |
| 1939                | _2_       |                                       |             | 1.0                                              |                                                  | ()                                               | 0                                                | 0                                                | 20,9                                             |                                                  |                                                  |
|                     |           | 1                                     |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           | + +                                   |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
| bservation          | s/Note:   |                                       |             |                                                  |                                                  |                                                  | •                                                |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             | SAMPL                                            | E COLLI                                          | CTION                                            |                                                  |                                                  |                                                  |                                                  |                                                  |
|                     |           |                                       |             |                                                  |                                                  | <del></del>                                      |                                                  |                                                  |                                                  |                                                  |                                                  |
| SAMPLE CO           | NTAINER T | · · · · · · · · · · · · · · · · · · · |             |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |
| □ Tedlar Bag        | 9         | X Sorption                            | n Tube:     | S                                                | □ Sumn                                           | na Caniste                                       | r                                                | □ Sept                                           | um Bottle                                        |                                                  |                                                  |
| SAMPLES             |           |                                       |             |                                                  | Sample S                                         | Series:                                          |                                                  |                                                  |                                                  |                                                  |                                                  |
| Sample/Loc          | ation ID  | Contain I                             | D           | Date .                                           | Time                                             | Depth                                            | Volume                                           | (3)                                              | TEE                                              | Commer                                           | nts                                              |
|                     | 477       | 5G-0                                  |             |                                                  | 443                                              | 2.51                                             | 14                                               | 0, 2                                             | 1448                                             |                                                  |                                                  |
| 244                 | 478       |                                       | du          | 6/2/19                                           |                                                  | 2.5                                              | 14                                               | 0.2                                              | 1455                                             |                                                  |                                                  |
| <del>- 7 7</del>    |           | 1-1-1                                 | Z -         | 121414                                           | <u> </u>                                         |                                                  | 1                                                | t ····                                           | 1 1 7                                            | <b></b>                                          |                                                  |
|                     |           | 1                                     | <del></del> | <b> </b>                                         |                                                  |                                                  | <del>                                     </del> |                                                  | <del>                                     </del> | t                                                | `                                                |
|                     |           | 1                                     |             |                                                  | <b>†</b>                                         | 1                                                |                                                  | <b> </b>                                         | 1                                                | <b></b>                                          | <u> </u>                                         |
|                     |           |                                       | · · · · ·   |                                                  | <b></b>                                          | <u> </u>                                         |                                                  | <del> </del>                                     |                                                  |                                                  |                                                  |
|                     |           | <del>  </del>                         |             | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> |                                                  | <del>                                     </del> |                                                  | <del>                                     </del> |                                                  |
|                     |           |                                       |             | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     |                                                  | <del> </del>                                     | +                                                | <del> </del>                                     | <del>                                     </del> |


130 Capital Drive, Suite C Golden, CO 80401-5654 Phone: 303-277-1694 Fax: 303-278-0104

| PAGE: 5 OF         | .5    |
|--------------------|-------|
| DATE / TIME: 10 12 | 114   |
| PROJECT:           | 1     |
| JOB NO.:           |       |
| REC / SAMP BY:     | SHORT |


| WELL/LOC. I          | NO <sub>y</sub> :     | WELL TY                                          | PE:                                     |                                                  | Monitor                                          |               | □ Extraction                                       | 1 -                                              | PRT Sys.    | ,è                                    | Other      |
|----------------------|-----------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------|----------------------------------------------------|--------------------------------------------------|-------------|---------------------------------------|------------|
| S6,-                 | Ø 5                   | WELL MA                                          | TERIAL                                  | 🗆                                                | PVC                                              |               | P Poly / Imp                                       | olant 🗆                                          | Teflon      |                                       | Other      |
|                      |                       |                                                  | *************************************** |                                                  |                                                  |               |                                                    |                                                  |             |                                       |            |
|                      |                       | WE                                               | LL OR                                   | PRT PU                                           | RGING                                            | & SAI         | MPLING LO                                          | OG                                               |             |                                       |            |
| PURGE VO             | LUME                  | <del></del>                                      |                                         |                                                  |                                                  | PURG          | ING METH                                           | OD                                               |             |                                       |            |
|                      | ing Inner D           |                                                  | _                                       |                                                  |                                                  | Ci Las        | ndtec                                              |                                                  |             |                                       |            |
| 1/4-inch             | □ 1/2-inch            | 1 □ 3/4-ind                                      | th 🗆                                    |                                                  |                                                  | □ Per         | istaltic pump                                      | 2016                                             | (C)         | Cous 1                                | 11/16      |
| Other                | h of Tubing           |                                                  | 2′                                      |                                                  |                                                  | □ Ott         | ner - Type: <u> </u>                               | PAC                                              |             | Cellal                                | ol. 1 1 1) |
| iotal Lengt          | n or Tubing           | / Casing:_                                       |                                         | # \/ale\;                                        |                                                  |               | istaltic pump<br>ner - Type: \frac{\frac{1}{2}}{2} | 2                                                | 5'          |                                       |            |
| Mainber VI           | Wen volum             | es to be r                                       | ai Bea (                                | r vois),                                         |                                                  |               | ven beptin                                         |                                                  |             | •                                     |            |
| DUDGE VO             | LIME CAL              |                                                  | **************************************  | (Trubin - 1                                      | /aluma = /6                                      | <b>.</b>      | h) <b>X</b> (# Purç                                | -a Valum                                         | oo) –       |                                       |            |
| PURGE VU             | LUME CALC             | LULA I IUI                                       |                                         |                                                  |                                                  |               | lume Table)                                        |                                                  |             |                                       |            |
| PURGE TI             | ЧE                    | · · · · · · · · · · · · · · · · · · ·            |                                         |                                                  | PURG                                             | RATE          |                                                    |                                                  | ACTUAL      | PURGE                                 | VOLUME     |
| STAR                 | TSTC                  | OP E                                             | ELAPSED                                 |                                                  | Initial ${\cal C}$                               | <u> </u>      | om Final <u>Ó</u>                                  | <u>└</u> ┦ू Ļ∕рі                                 | m           |                                       | Liters     |
| EVELD DAD            | LAMETER M             | EACUBE                                           | JENT                                    |                                                  |                                                  |               | \ J &                                              | A con A                                          |             |                                       |            |
| LIELD LAK            |                       |                                                  |                                         |                                                  |                                                  | <u> </u>      |                                                    | -                                                | 02          | · · · · · · · · · · · · · · · · · · · |            |
| Time                 | Minutes               | FLOW                                             | Vacuum                                  | PID                                              | / <u>/</u>                                       | CM<br>%       | 4 C0/2                                             | 92                                               | Bari<br>%   |                                       |            |
| 00:00                |                       | L/mln                                            |                                         | ppm<br>⊿0.2                                      | pptp                                             | %0<br>******* | 70                                                 | 70                                               | 70          |                                       |            |
| 1404<br>1408         |                       |                                                  |                                         | 8.1                                              | <del>                                     </del> |               |                                                    | Ly                                               |             |                                       |            |
| 1410                 |                       |                                                  |                                         | ·                                                | <del> </del>                                     | \$            | \$                                                 | ø                                                | 20.9        |                                       |            |
| 7911                 |                       | 1                                                |                                         | <del></del>                                      | 1 1                                              | 1 3           | d                                                  | 1                                                | 20.9        |                                       |            |
|                      |                       |                                                  |                                         |                                                  |                                                  |               |                                                    |                                                  |             |                                       |            |
|                      |                       |                                                  |                                         |                                                  |                                                  |               |                                                    |                                                  |             |                                       |            |
|                      |                       | <u> </u>                                         | <u> </u>                                |                                                  |                                                  | <b>.</b>      |                                                    |                                                  |             |                                       |            |
|                      |                       |                                                  |                                         |                                                  | 1                                                |               |                                                    |                                                  | <del></del> |                                       |            |
| Observation          | ns/Note:              |                                                  |                                         |                                                  |                                                  | ı             |                                                    |                                                  |             |                                       |            |
|                      |                       |                                                  |                                         |                                                  |                                                  |               |                                                    |                                                  |             |                                       |            |
|                      |                       |                                                  |                                         |                                                  |                                                  |               |                                                    |                                                  |             |                                       |            |
|                      |                       |                                                  |                                         |                                                  |                                                  |               |                                                    |                                                  |             |                                       |            |
|                      |                       |                                                  |                                         |                                                  |                                                  |               |                                                    |                                                  |             |                                       |            |
|                      |                       |                                                  |                                         | SAMP                                             | LE COLI                                          | LECTIO        | N                                                  |                                                  |             |                                       |            |
|                      | . C. Evis makes above |                                                  |                                         |                                                  |                                                  |               |                                                    |                                                  |             |                                       |            |
| SAMPLE CO  Tedlar Ba | NTAINER T             |                                                  | ion Tube:                               | \$                                               | □ Sun                                            | nma Can       | ister                                              | □ Sept                                           | um Bottle   |                                       |            |
|                      | -9                    | 00/pc                                            |                                         | -                                                |                                                  |               |                                                    |                                                  |             |                                       |            |
| SAMPLES Sample/Lo    |                       | Cantain                                          |                                         | <b></b>                                          | Time                                             | Series:       | h Volume                                           | 1 (2)                                            | A top       | Commer                                |            |
| <u> スタ子80</u>        |                       | SG-                                              | 85                                      | 6/2/12                                           | 1414                                             | 2.5           |                                                    | 02                                               |             | Commer                                | ius        |
| 24947                |                       | 56 -                                             |                                         | 6/2/1                                            |                                                  | 2             |                                                    | 8.7                                              |             |                                       |            |
| ~1177                | 10                    | <del>                                     </del> | 43                                      | <del>(////</del>                                 | 1-1/-1                                           | 161           | <del>-    </del>                                   | <del>                                     </del> | 17766       |                                       |            |
|                      | 1                     | -                                                | <del> </del>                            | <del> </del>                                     | +                                                | +             |                                                    | <del> </del>                                     | +           | <del> </del>                          |            |
|                      |                       |                                                  | <del> </del>                            |                                                  |                                                  | +-            |                                                    | <b>†</b>                                         |             |                                       |            |
|                      | <u> </u>              | <del> </del>                                     |                                         | <del>                                     </del> |                                                  |               |                                                    | <del> </del>                                     |             | +                                     |            |
|                      | -                     |                                                  |                                         |                                                  | +                                                |               |                                                    | <del> </del>                                     | -           | <del> </del>                          |            |
|                      |                       | -                                                | <del> </del>                            | <b> </b>                                         | <del> </del>                                     |               |                                                    | <del> </del>                                     |             | -                                     |            |
|                      | T .                   | 1                                                | 1                                       | 1                                                | 1                                                | 1             | 1                                                  | 1                                                | 1           | 1                                     | 1          |




| Bell Product Post CHS  6/4/14  0740 C. Stort on str. No one in office. 0750 Grained access to driving through Darcy e. Tanger Prepare to set air  somplers  CL sources w/ 8 hr regulators.  G758 Set Air-0-01. Regulator #133, tank  #9251m. P.= 24"14. 0800 Precision concrete on site 0814 Besin coring. 0819 Set sampler a Dor 101. C14 "Hg  Nir I-01  0821 Set sampler a Dor 101. C14 "Hg  0821 Set sampler a Dor 101. C14 "Hg  0850 Dehymichter turnee off in  C1621 Spare. 0853 Set Air-C-01 western sample se" Hg  0902 Precision crew done, 3 woles. 1.5" diam 24" deep, called Lee a  color will prepare to drive at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0)          | Bell    | Track         | ra Pos  | sf (         | 245                              |                   | 6/2/14   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------------|---------|--------------|----------------------------------|-------------------|----------|
| Davey & Tanger Prepare to sel air  Somplers  Col Surves w/ B hr regulators.  Color Precision concrete on site of the observation |              |         |               |         |              |                                  |                   |          |
| Darcy @ Tanaser Prepare to Set air somplers  Somplers  Coll surves w/8 hr regulators.  Coll su |              |         |               |         |              |                                  |                   |          |
| Semplers  (al sommas w/8 hr regulators.  C758 Sel Air-O-Ø1. Regulator #133, fack  #925 im. R= 24"Ha.  0800 Precision correcte on site  0814 Begin corins.  0819 Set sampler a Door 101. Q14 "Hg  Air-I-Ø1  0821 Sel sampler a Door 113 @9 Hg  Air-I-Ø2  0850 Dehmichter tornee off in  Clauspare.  0855 Set Air-C-Ø1, Jet entern sample, 25" Hg  0902 Precision crew done, 3 woles  1.5" diam, 24" deep, Called Lee 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0750         | Gained  | $-\infty$ e   | iss to  | driver       | way t                            | Moren             |          |
| GL sommes w/ 8 hr regulators.  G758 Set Air-O-Ø1. Regulator #133, Jank  #925 im. P. = 24" Hg.  0800 Precision concrete on site  0814 Besin coring.  0819 Set sampler a Door 101. Q14 "Hg.  Air I-Ø1  0821 Set sampler a Door 113 @9 Hg  Air-I-Ø2  0850 Dehrmiditer turned off in  Clandspare.  0855 Set Air-C-Ø1 Jet eastern sample 25" Hg  0902 Precision crew done 3 woles  1.5" diam 24" deep, Callad Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u></u>      | Dave    | 7 @           | Tanas   | er Pre       | epore t                          | 0 50              | ai C     |
| 0800 Precision concrete on site 0814 Begin coring. 0819 Set sampler a Door 101. Q14 "Hg  Air-I-01  0821 Set sampler a Door 113 @9 Hg  Air-I-02  0850 Dehmidifer formed off in  Classspare.  0855 Set Air-C-01 Jet eastern sample 25" Hg  0900 set Air-C-02 western sample 25" Hg  0901 Precision crew done, 3 woles  1.5" dian, 24" deep, Callad Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            | Some    | 1612          | -       | 1            |                                  |                   | \ \ \ \  |
| 0800 Precision concrete on site 0814 Besin coring. 0819 Set sampler a Door 101. @14 "Hs  Air-I-01  0821 Set sampler a Door 113 @9 Hg  Air-I-02  0850 Dehmidifer turned off in  Classspare.  0855 Set Air-C-01 Jet eastern sample 25" Hg  0900 set Air-C-02 western sample 25" Hg  0901 Precision crew done, 3 woles  1.5" diam, 24" deep, Callad Lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (200         | (oL     | - St          | suras   | <u> </u>     | 8 hc                             | regu              | 104615.  |
| 0800 Precision concrete on site 0814 Besin coring. 0819 Set sampler a Door 101. @14 "Hs  Air-I-01  0821 Set sampler a Door 113 @9 Hg  Air-I-02  0850 Dehmidifer turned off in  Classspare.  0855 Set Air-C-01 Jet eastern sample 25" Hg  0900 set Air-C-02 western sample 25" Hg  0901 Precision crew done, 3 woles  1.5" diam, 24" deep, Callad Lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0108         | # 925   | 41/-          | 0-01    | Regula       | JOC 3                            | <del>* (32)</del> | -ton K   |
| 0819 set sampler a Door 101. Q14 "Hg  Air-I-Ø1  0821 set sampler a Door 113 @9 Hg  Air-I-Ø2  0850 Dehmidiser turned off in  Clas Spare  0855 set Air-C-Ø1 Jes enstern sample 25" Hg  0900 set Air-C-Ø2 western sample 25" Hg  0001 Precision crew done, 3 woles  1.5" diam 24" deep, called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 0000    | 17 14         | Vi - 20 | 1 H3         |                                  | . 0               | <u> </u> |
| 0819 set sampler a Door 101. Q14 "Hg  Air-I-Ø1  0821 set sampler a Door 113 @9 Hg  Air-I-Ø2  0850 Dehmidiser turned off in  Clas Spare  0855 set Air-C-Ø1 Jes enstern sample 25" Hg  0900 set Air-C-Ø2 western sample 25" Hg  0001 Precision crew done, 3 woles  1.5" diam 24" deep, called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Per'    | 100           | CONCI   | <u> </u>     | $\frac{n}{s}$                    |                   |          |
| 0821 Set sampler e poor 113 @9 Hg  Air-I-02  0850 Dehuniditer turned off in  Clas Ispare.  0855 Set Air-C-01 Jest eastern sample 25" Hg  0900 set Air-C-02 western sample 25" Hg  0001 Precision crew done 3 wies  1.5" diam, 24" deep, Called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0819         | bes in  |               | 100.    |              | <i>(</i> ) <i>(</i> ) <i>(</i> ) | 0.14              | и,,,     |
| 0850 Dehmiditer torned off in  Clas Ispare:  0855 Set Air-C-BI Jet eastern sample 25" Hg  0900 Set Air-C-B2 Western sample 25" Hg  0001 Precision crew done, 3 wies  1.5" dian, 24" deep, Called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | Air     | 7- ~          | Y C     | <u>e</u> 100 | 101                              | <b>2</b> 17       | T 5      |
| 0850 Dehmiditer torned off in  Clas Ispare:  0855 Set Air-C-BI Jet entern simple 25" Hg  0900 Set Air-C-B2 Western simple 25" Hg  0001 Precision crew done, 3 wies,  1.5" dian, 24" deep, Called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0811         | <.D     | 1 9           | 1000    | 2 086        | 113                              | a, 91             | +100     |
| 0850 Dehimiciter tornee oft in  Cran space:  0855 Set Air-C-Bl. Jest eastern simple 25" Hg  0900 set Air-C-B2 western simple 25" Hg  0901 Precision crew done 3 woles,  1.5" diam, 24" deep, Called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | H; (-1) | -012          |         |              |                                  |                   | İ        |
| 0855 Set Air-C-Øl Jet eastern somple 25"Hg<br>0900 set Air-C-Ø2 western somple 25"Hg<br>0901 Precision crew done, 3 voles,<br>1.5" dian, 24" deep, Called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0850         | Deh     | win) is       | Fe/ 1.  | Men          | 245                              | 100               |          |
| 0955 Set Air-C-Bl Western sample 25" Hg<br>0900 set Air-C-B2 Western sample 25" Hg<br>0901 Precision crew done, 3 voles,<br>1.5" diam, 24" deep, Called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | Cla     | Spa           | æ .     | -1.0         |                                  | , ,               | ·        |
| 0900 Set ATIT-C-82, Western sample 25" Hg<br>0902 Precision crew Jone, 3 voles,<br>1.5" Jian, 24" Jeep, Called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0855         | StA     | wc            | - 01    | where.       | eastern                          | Some              | 123 Ha   |
| 1.5" d'an, 24" deep, called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000         | sel AT  | ir-(          | - go 、  | west         | PSO S                            | mples             | 15" Ha   |
| 1.5" d'an, 24" deep, Called Lee Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0901         | Precis  | 100           | crew    | 000          | 2, 3                             | notes             | ,        |
| 0840, will prepare to drive at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 1.511   | Diam          | , 24" 0 | leep.        | alla                             | Lee               | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 08/10   | , wi          | ll pr   | epare        | 400                              | rive a            | #        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         | 1             | T       | <b>Y</b>     |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |               |         |              |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |               |         | -            |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |               |         | -            |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         | $\overline{}$ |         |              |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }·<br>·<br>· |         |               |         |              |                                  | ****              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>        |         | -             |         |              |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |               |         |              |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |               | 1       |              |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :            |         |               |         |              |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | APPA    |               |         |              |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         | `             |         |              |                                  |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |         |               |         | 1            |                                  |                   | -        |



| Ø O      | Bell                                   | tradir           | , POS            | + c         | H5.      | 6/2/12                                  | <u> </u> |
|----------|----------------------------------------|------------------|------------------|-------------|----------|-----------------------------------------|----------|
| 1126     | Preso                                  | sing !           | 10 20            | mple        | ا بالله  | 36-92                                   | <u>-</u> |
|          | <u> </u>                               | oer e            | in franc         | <u>- Ga</u> | <u> </u> |                                         |          |
|          | sample                                 | 368              | 30"              | <u> </u>    | Q        | )D<br>\$61-02                           | £\$      |
| <u> </u> | 49479<br>49480                         | 1147             | 30 <sup>11</sup> | 16          | 0.24     | 56-02                                   | 1152     |
| 030 4    | 1110                                   | 1 1 1            | 1.               |             |          | 34 0 =                                  | 1106     |
| 2511     | Benin                                  | prg.             | e. 14            | tube        | 1        |                                         |          |
|          |                                        |                  | 3.,              |             |          |                                         |          |
|          | ţ                                      | 610              | · (0             | H25         | LEL      | 82                                      | ·        |
|          | 1137                                   | 32               |                  |             |          |                                         |          |
| *        | 1134                                   | 0.8              |                  |             |          |                                         |          |
|          | 1135                                   | 0.6              | 4                | <u> </u>    | 0        | 19.8                                    |          |
|          | 136                                    | 4                | 8                | 2           | 3        | 19.8                                    |          |
|          | 113.7                                  | -                | <u></u> 수        | 2           | 3        | 19.9                                    |          |
|          |                                        | . <del>-</del>   |                  | , , ,       |          |                                         |          |
|          | 1140                                   | By's             | Sampli<br>Sampli | line)       | Dy       | ٥ <del></del>                           |          |
|          | 1177 "                                 | ) <b>5</b> 8;^   | Dampli           | ne go       | 7980     |                                         |          |
| *        | /                                      | \                |                  | 1           |          |                                         |          |
|          |                                        |                  |                  |             |          |                                         | -        |
|          |                                        | <u> </u>         |                  | -           |          |                                         |          |
|          | ····                                   | \                | 115              |             |          |                                         |          |
|          |                                        | <del>- \</del> - |                  |             |          |                                         |          |
|          | 6/5                                    |                  |                  |             |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |
|          |                                        | 14               |                  | 3           | *        |                                         |          |
|          | •••••••••••••••••••••••••••••••••••••• |                  |                  |             |          |                                         |          |
| · ·      |                                        |                  |                  |             |          |                                         |          |
| :        |                                        |                  |                  |             |          |                                         |          |
| 1        |                                        |                  |                  | <b>\</b>    |          | <u> </u>                                |          |
|          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                  |                  | J           |          | }                                       |          |
|          | <del>,</del>                           |                  | ·                | 1           |          |                                         |          |
|          |                                        | 1                |                  |             |          |                                         |          |



|    |             |                | , <u>, , , , , , , , , , , , , , , , , , </u> |                       | - \ -    | 101 . 1  | 011       | <u> </u>                              |
|----|-------------|----------------|-----------------------------------------------|-----------------------|----------|----------|-----------|---------------------------------------|
| Q  | (8)         | Bell           | (100)                                         | my Ke                 | rst 4    | p/2/ [7  |           |                                       |
| _  | 1/100       | , ,            |                                               | 7                     |          | - 6/     | 26        |                                       |
|    | 1400        | Pres           | ere >                                         | O Sa                  | mple     | 6 24     | · - \$ 3. |                                       |
| -  |             |                |                                               |                       |          |          |           |                                       |
| -  |             |                | ······································        |                       |          |          |           |                                       |
| -  |             |                |                                               |                       |          |          |           |                                       |
| -  | Time        | PID            |                                               | > 4                   | EZ       | LEL      | 02        |                                       |
|    |             |                |                                               | H.                    | ٤        |          |           |                                       |
| -  | 1404        | \$.2           | -                                             |                       |          | -        | _         |                                       |
| -  | 1408        | <b></b>        | -                                             | -                     |          | _        | _         |                                       |
| -  | 14/0        |                | \$                                            |                       | 7        | \$       | 20        | .9                                    |
| _  | 14/1        |                | 7                                             |                       |          | -d       | 20        |                                       |
| _  | <u> </u>    |                | . <u> </u>                                    |                       | <u> </u> | 7        |           | <u>'</u>                              |
| _  | 1 2         |                |                                               | //                    | 11/11    | 7 /      |           |                                       |
|    | 1412        | Begin          | · Pun                                         | ; e . \               | 19       | 70 be    |           |                                       |
| -  |             | موانح          |                                               | ntin                  | peo,     | en t     | jelo      |                                       |
| -  | <del></del> | oru-s          |                                               | ļ                     |          |          |           |                                       |
| ٠  | 1430        | Pa             | w                                             | (                     | NHED     | 00       | site      |                                       |
| ٠  | 1300        | Par            | 4                                             | Joe                   | Tat      | Asitc.   |           |                                       |
| -  |             |                | •                                             |                       |          |          |           |                                       |
|    | 1943        | Some           | 110                                           | 56-0                  | 4 2      | 4947     | 7         |                                       |
|    | 1450        | Sem            | pled                                          | 5/7-0                 | 4,2      | 4947     | 8         |                                       |
|    |             | Same           | 100                                           | C C - O               | 5,2      | 4780     | 8         | <u> </u>                              |
|    |             |                | 100                                           | 26-0                  | 5,2      | 10 47    | -/        |                                       |
|    | TAGI        | Samp           | 120.                                          | 20/- A                | 13)8     |          | <u> </u>  | å                                     |
|    | 7,          |                | 1                                             |                       | ļ        | 11/4     |           |                                       |
| :  | 1601        | Retro          | ved                                           | AV                    | 5-01.    | 1 1      | B         |                                       |
|    | 1621        | KGA V.         | evia +                                        | #\ L                  | 1-01     |          | <b>5</b>  |                                       |
|    | 1623        | Ketrie         | (c) A                                         | 11-7                  | - 02     | 911 H    | <u></u>   |                                       |
|    | 1700        | Retri          | evol A                                        | ir-c                  | -01      |          | <u> </u>  | · · · · · · · · · · · · · · · · · · · |
|    | 1702        | Retr           | euro 1                                        | Air-C                 | -02      |          | <u> </u>  |                                       |
|    | 1710        | Hand           | 000                                           | FF S                  | tomoli   | of Ch    | Mid       | nael                                  |
|    | (           | Fre            | m H                                           | 200                   | 1        | Site     |           |                                       |
|    | 7141        | 100            | (20)                                          | II a                  | 800      | T T      | Ac Inc    | N                                     |
|    | 1-4         | 1              | 200                                           |                       |          | 5 ,60    | 1 17      |                                       |
|    |             | <del> W/</del> | 7                                             | 2.                    | D 3 K-80 | y me     | 10        | 0.10.1+                               |
|    | 12/15       | MOOG           | 1 10                                          | hem                   | 1154 C   | A NOVE   | - FEE     | CVLCV().                              |
| 1  | 1775        | 011            | 12010                                         | <u> </u>              | <u></u>  | <u> </u> | <u> </u>  |                                       |
| W. |             |                | المستعقب والرادان                             | market and the second |          |          |           | e.                                    |



Appendix D Laboratory Analytical Reports



Friday, June 13, 2014

Joe Tracy Intera 6000 Uptown Blvd. NE, Suite 220 Albuquerque, NM 87110

RE: 14166: Bell Trading Post

Dear Joe:

Vista GeoScience received 6 Soil Vapor Samples, collected on Sorbent Tubes on 6/3/2014 for 8260 analysis presented in the following report.

Order No.: 1406001

The following report contains data, associated QC and laboratory specifications; exceptions are noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Roger Bain Senior Chemist Case Narrative June 13, 2014 Vista GeoScience Page 2

CLIENT: Intera

CASE NARRATIVE Project: 14166.01: Bell Trading Post

Lab Order: 1406001

Samples were received on 6/3/14 from Intera and were accompanied by a chain of custody form. The samples and their containers appeared to be in good condition and the chain of custody form was complete and accurate.

Samples were analyzed using the methods outlined in the following references: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition and Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-17 (EPA/625/R-96/010b).

Calibration - The laboratory instruments are calibrated using method appropriate standards. On each day project samples are analyzed the instrument calibration is verified using a mid level Continuing Calibration Verification (CCV). Calculations are carried out by the data system to compute the actual concentration of analyte in the original sample.

Method Blanks, Trip Blanks and Instrument Blanks - Blanks are analyzed after each initial calibration, continuing calibration verification, and after samples determined to have high concentrations of analytes to verify system cleanliness. Method blanks are analyzed to verify the cleanliness of procedures requiring sample preparation prior to analysis. Trip blanks are prepared by the laboratory and accompany the samples to verify that there was no contamination during transport.

Batch QC - Prior to analysis, the project samples are associated with a QC batch. This batch is then prepared and analyzed along with QC samples prepared at the same time and using the same reagents and standards. The QC samples associated with a sample batch may include Method Blanks (MB). The results of the batch QC samples are included in the QC section of the report.

#### **Analyst Comments:**

Sample SG-3DUP did not duplicate. Two analytes are reported above linear range in sample SG-2 and are flagged with an "E".

Roger Bain Senior Chemist

Vista GeoScience PH: 303.277.1694 FAX: 303.278.0104 E-Mail: info@VistaGeoScience.com

**CLIENT:** Client Sample ID: SG-01 Intera Lab Order: 1406001 **Tag Number: 249472 Project:** 14166.01: Bell Trading Post Collection Date: 6/2/2014 Lab ID: 1406001-001A Matrix: SOIL GAS **Date Received:** 6/3/2014

| Analyses                      | Result | Limit | Qual | Units | DF | Date Analyzed |
|-------------------------------|--------|-------|------|-------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW82  | 260B |       |    | Analyst: RB   |
| Dichlorodifluoromethane       | 1.7    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| Chloromethane                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Vinyl chloride                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromomethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloroethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Trichlorofluoromethane        | 4.5    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloroethene            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Freon-113                     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Acetone                       | 170    | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| lodomethane                   | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Carbon disulfide              | 25     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Methylene chloride            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Acrylonitrile                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Methyl tert-butyl ether       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| trans-1,2-Dichloroethene      | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Vinyl acetate                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Butanone                    | 21     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| cis-1,2-Dichloroethene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromochloromethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Tetrahydrofuran               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloroform                    | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,1-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloropropene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Carbon tetrachloride          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Benzene                       | 14     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Trichloroethene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Dibromomethane                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromodichloromethane          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 4-Methyl-2-pentanone          | 19     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Chloroethyl vinyl ether     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| cis-1,3-Dichloropropene       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Toluene                       | 140    | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| trans-1,3-Dichloropropene     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,2-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Tetrachloroethene             | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,3-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε
- Value above quantitation range Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

**CLIENT:** Client Sample ID: SG-01 Intera Lab Order: 1406001 **Tag Number:** 249472 **Project:** 14166.01: Bell Trading Post Collection Date: 6/2/2014 Lab ID: 1406001-001A **Date Received:** 6/3/2014 Matrix: SOIL GAS

| Analyses                      | Result | Limit Qua | Units | DF | Date Analyzed      |
|-------------------------------|--------|-----------|-------|----|--------------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8260B   |       |    | Analyst: <b>RB</b> |
| 2-Hexanone                    | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Dibromochloromethane          | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,2-Dibromoethane             | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Chlorobenzene                 | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,1,1,2-Tetrachloroethane     | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Ethylbenzene                  | 51     | 5.0       | ng/L  | 1  | 6/12/2014          |
| m,p-Xylene                    | 140    | 10        | ng/L  | 1  | 6/12/2014          |
| o-Xylene                      | 38     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Styrene                       | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Bromoform                     | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Isopropylbenzene              | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,1,2,2-Tetrachloroethane     | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Bromobenzene                  | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,2,3-Trichloropropane        | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| n-Propylbenzene               | 10     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 2-Chlorotoluene               | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,3,5-Trimethylbenzene        | 10     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 4-Chlorotoluene               | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| tert-Butylbenzene             | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,2,4-Trimethylbenzene        | 34     | 5.0       | ng/L  | 1  | 6/12/2014          |
| sec-Butylbenzene              | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,3-Dichlorobenzene           | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 4-Isopropyltoluene            | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,4-Dichlorobenzene           | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,2-Dichlorobenzene           | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| n-Butylbenzene                | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,2-Dibromo-3-chloropropane   | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| 1,2,4-Trichlorobenzene        | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Hexachlorobutadiene           | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |
| Naphthalene                   | 4.1    | 5.0 J     | ng/L  | 1  | 6/12/2014          |
| 1,2,3-Trichlorobenzene        | ND     | 5.0       | ng/L  | 1  | 6/12/2014          |

Qualifiers: Value exceeds Maximum Contaminant Level

Ε Value above quantitation range

Analyte detected below quantitation limits
Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

**Date:** 13-Jun-14

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

**CLIENT:** Client Sample ID: SG-02 Intera Lab Order: 1406001 **Tag Number: 249479 Project:** 14166.01: Bell Trading Post Collection Date: 6/2/2014 Lab ID: 1406001-002A **Date Received:** 6/3/2014 Matrix: SOIL GAS

| Analyses                      | Result | Limit | Qual | Units | DF | Date Analyzed |
|-------------------------------|--------|-------|------|-------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8   | 260B |       |    | Analyst: RB   |
| Dichlorodifluoromethane       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloromethane                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Vinyl chloride                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromomethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloroethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Trichlorofluoromethane        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloroethene            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Freon-113                     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Acetone                       | 400    | 5.0   | Е    | ng/L  | 1  | 6/12/2014     |
| lodomethane                   | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Carbon disulfide              | 8.7    | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Methylene chloride            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Acrylonitrile                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Methyl tert-butyl ether       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| trans-1,2-Dichloroethene      | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Vinyl acetate                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Butanone                    | 70     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| cis-1,2-Dichloroethene        | 1.9    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| Bromochloromethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Tetrahydrofuran               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloroform                    | 7.7    | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,1-Trichloroethane         | 1.6    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloropropene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Carbon tetrachloride          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Benzene                       | 11     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Trichloroethene               | 1800   | 5.0   | Ε    | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Dibromomethane                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromodichloromethane          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 4-Methyl-2-pentanone          | 20     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Chloroethyl vinyl ether     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| cis-1,3-Dichloropropene       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Toluene                       | 67     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| trans-1,3-Dichloropropene     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,2-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Tetrachloroethene             | 12     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,3-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε
- Value above quantitation range Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

**CLIENT:** Client Sample ID: SG-02 Intera Lab Order: 1406001 **Tag Number: 249479 Project:** 14166.01: Bell Trading Post Collection Date: 6/2/2014 Lab ID: 1406001-002A **Date Received:** 6/3/2014 Matrix: SOIL GAS

| Analyses                      | Result | Limit | Qual | Units | DF | Date Analyzed |
|-------------------------------|--------|-------|------|-------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW82  | 260B |       |    | Analyst: RB   |
| 2-Hexanone                    | 20     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Dibromochloromethane          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dibromoethane             | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chlorobenzene                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,1,2-Tetrachloroethane     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Ethylbenzene                  | 41     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| m,p-Xylene                    | 200    | 10    |      | ng/L  | 1  | 6/12/2014     |
| o-Xylene                      | 82     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Styrene                       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromoform                     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Isopropylbenzene              | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,2,2-Tetrachloroethane     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromobenzene                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2,3-Trichloropropane        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| n-Propylbenzene               | 2.6    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 2-Chlorotoluene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,3,5-Trimethylbenzene        | 3.5    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 4-Chlorotoluene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| tert-Butylbenzene             | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2,4-Trimethylbenzene        | 19     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| sec-Butylbenzene              | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,3-Dichlorobenzene           | 4.3    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 4-Isopropyltoluene            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,4-Dichlorobenzene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichlorobenzene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| n-Butylbenzene                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dibromo-3-chloropropane   | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2,4-Trichlorobenzene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Hexachlorobutadiene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Naphthalene                   | 8.7    | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2,3-Trichlorobenzene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |

Qualifiers: Value exceeds Maximum Contaminant Level

Ε Value above quantitation range

Analyte detected below quantitation limits
Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

**Date:** 13-Jun-14

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

**CLIENT:** Client Sample ID: SG-03 Intera Lab Order: 1406001 **Tag Number: 249473 Project:** 14166.01: Bell Trading Post Collection Date: 6/2/2014 Lab ID: 1406001-003A **Date Received:** 6/3/2014 Matrix: SOIL GAS

| Analyses                      | Result | Limit | Qual | Units | DF | Date Analyzed |
|-------------------------------|--------|-------|------|-------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8   | 260B |       |    | Analyst: RB   |
| Dichlorodifluoromethane       | 2.3    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| Chloromethane                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Vinyl chloride                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromomethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloroethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Trichlorofluoromethane        | 4.1    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloroethene            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Freon-113                     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Acetone                       | 85     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| lodomethane                   | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Carbon disulfide              | 4.8    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| Methylene chloride            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Acrylonitrile                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Methyl tert-butyl ether       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| trans-1,2-Dichloroethene      | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Vinyl acetate                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Butanone                    | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| cis-1,2-Dichloroethene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromochloromethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Tetrahydrofuran               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloroform                    | 29     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,1-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloropropene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Carbon tetrachloride          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Benzene                       | 7.7    | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Trichloroethene               | 11     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Dibromomethane                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromodichloromethane          | 5.4    | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 4-Methyl-2-pentanone          | 9.2    | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Chloroethyl vinyl ether     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| cis-1,3-Dichloropropene       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Toluene                       | 28     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| trans-1,3-Dichloropropene     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,2-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Tetrachloroethene             | 1.5    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 1,3-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε
- Value above quantitation range Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

 CLIENT:
 Intera
 Client Sample ID:
 SG-03

 Lab Order:
 1406001
 Tag Number:
 249473

 Project:
 14166.01: Bell Trading Post
 Collection Date:
 6/2/2014

 Lab ID:
 1406001-003A
 Date Received:
 6/3/2014
 Matrix:
 SOIL GAS

| Analyses                      | Result | Limit | Qual | Units | DF | Date Analyzed      |
|-------------------------------|--------|-------|------|-------|----|--------------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8   | 260B |       |    | Analyst: <b>RB</b> |
| 2-Hexanone                    | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Dibromochloromethane          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,2-Dibromoethane             | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Chlorobenzene                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,1,1,2-Tetrachloroethane     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Ethylbenzene                  | 12     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| m,p-Xylene                    | 39     | 10    |      | ng/L  | 1  | 6/12/2014          |
| o-Xylene                      | 15     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Styrene                       | 2.7    | 5.0   | J    | ng/L  | 1  | 6/12/2014          |
| Bromoform                     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Isopropylbenzene              | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,1,2,2-Tetrachloroethane     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Bromobenzene                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,2,3-Trichloropropane        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| n-Propylbenzene               | 2.1    | 5.0   | J    | ng/L  | 1  | 6/12/2014          |
| 2-Chlorotoluene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,3,5-Trimethylbenzene        | 7.3    | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 4-Chlorotoluene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| tert-Butylbenzene             | 1.6    | 5.0   | J    | ng/L  | 1  | 6/12/2014          |
| 1,2,4-Trimethylbenzene        | 14     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| sec-Butylbenzene              | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,3-Dichlorobenzene           | 5.8    | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 4-Isopropyltoluene            | 33     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,4-Dichlorobenzene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,2-Dichlorobenzene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| n-Butylbenzene                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,2-Dibromo-3-chloropropane   | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,2,4-Trichlorobenzene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Hexachlorobutadiene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Naphthalene                   | 5.4    | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,2,3-Trichlorobenzene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |

Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

 CLIENT:
 Intera
 Client Sample ID:
 SG-04

 Lab Order:
 1406001
 Tag Number:
 249477

 Project:
 14166.01: Bell Trading Post
 Collection Date:
 6/2/2014

 Lab ID:
 1406001-004A
 Date Received:
 6/3/2014
 Matrix:
 SOIL GAS

| Analyses                      | Result | Limit | Qual | Units | DF | Date Analyzed |
|-------------------------------|--------|-------|------|-------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8   | 260B |       |    | Analyst: RB   |
| Dichlorodifluoromethane       | 2.5    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| Chloromethane                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Vinyl chloride                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromomethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloroethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Trichlorofluoromethane        | 3.0    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloroethene            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Freon-113                     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Acetone                       | 57     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| lodomethane                   | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Carbon disulfide              | 12     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Methylene chloride            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Acrylonitrile                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Methyl tert-butyl ether       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| trans-1,2-Dichloroethene      | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Vinyl acetate                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Butanone                    | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| cis-1,2-Dichloroethene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromochloromethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Tetrahydrofuran               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chloroform                    | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,1-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1-Dichloropropene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Carbon tetrachloride          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Benzene                       | 3.9    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Trichloroethene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Dibromomethane                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromodichloromethane          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 4-Methyl-2-pentanone          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Chloroethyl vinyl ether     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| cis-1,3-Dichloropropene       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Toluene                       | 51     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| trans-1,3-Dichloropropene     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,2-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Tetrachloroethene             | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,3-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |

Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

 CLIENT:
 Intera
 Client Sample ID:
 SG-04

 Lab Order:
 1406001
 Tag Number:
 249477

 Project:
 14166.01: Bell Trading Post
 Collection Date:
 6/2/2014

 Lab ID:
 1406001-004A
 Date Received:
 6/3/2014
 Matrix:
 SOIL GAS

| Analyses                      | Result | Limit Qua | al Units | DF | Date Analyzed |
|-------------------------------|--------|-----------|----------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8260E   | 3        |    | Analyst: RB   |
| 2-Hexanone                    | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Dibromochloromethane          | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,2-Dibromoethane             | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Chlorobenzene                 | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,1,1,2-Tetrachloroethane     | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Ethylbenzene                  | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| m,p-Xylene                    | ND     | 10        | ng/L     | 1  | 6/12/2014     |
| o-Xylene                      | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Styrene                       | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Bromoform                     | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Isopropylbenzene              | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,1,2,2-Tetrachloroethane     | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Bromobenzene                  | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,2,3-Trichloropropane        | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| n-Propylbenzene               | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 2-Chlorotoluene               | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,3,5-Trimethylbenzene        | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 4-Chlorotoluene               | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| tert-Butylbenzene             | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,2,4-Trimethylbenzene        | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| sec-Butylbenzene              | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,3-Dichlorobenzene           | 1.9    | 5.0 J     | ng/L     | 1  | 6/12/2014     |
| 4-Isopropyltoluene            | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,4-Dichlorobenzene           | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,2-Dichlorobenzene           | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| n-Butylbenzene                | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,2-Dibromo-3-chloropropane   | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,2,4-Trichlorobenzene        | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Hexachlorobutadiene           | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| Naphthalene                   | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |
| 1,2,3-Trichlorobenzene        | ND     | 5.0       | ng/L     | 1  | 6/12/2014     |

Qualifiers: \* Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

**Date:** 13-Jun-14

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

**CLIENT:** Client Sample ID: SG-05 Intera Lab Order: 1406001 Tag Number: 247809 **Project:** 14166.01: Bell Trading Post Collection Date: 6/2/2014 **Date Received:** 6/3/2014 Lab ID: 1406001-005A Matrix: SOIL GAS

| Analyses                      | Result | Limit | Qual | Units | DF | Date Analyzed      |
|-------------------------------|--------|-------|------|-------|----|--------------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8   | 260B |       |    | Analyst: <b>RB</b> |
| Dichlorodifluoromethane       | 3.3    | 5.0   | J    | ng/L  | 1  | 6/12/2014          |
| Chloromethane                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Vinyl chloride                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Bromomethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Chloroethane                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Trichlorofluoromethane        | 4.7    | 5.0   | J    | ng/L  | 1  | 6/12/2014          |
| 1,1-Dichloroethene            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Freon-113                     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Acetone                       | 73     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| lodomethane                   | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Carbon disulfide              | 3.4    | 5.0   | J    | ng/L  | 1  | 6/12/2014          |
| Methylene chloride            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Acrylonitrile                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Methyl tert-butyl ether       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| trans-1,2-Dichloroethene      | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,1-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Vinyl acetate                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 2,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 2-Butanone                    | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| cis-1,2-Dichloroethene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Bromochloromethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Tetrahydrofuran               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Chloroform                    | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,1,1-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,1-Dichloropropene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Carbon tetrachloride          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Benzene                       | 4.0    | 5.0   | J    | ng/L  | 1  | 6/12/2014          |
| 1,2-Dichloroethane            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Trichloroethene               | 14     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,2-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Dibromomethane                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Bromodichloromethane          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 4-Methyl-2-pentanone          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 2-Chloroethyl vinyl ether     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| cis-1,3-Dichloropropene       | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Toluene                       | 11     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| trans-1,3-Dichloropropene     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,1,2-Trichloroethane         | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| Tetrachloroethene             | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |
| 1,3-Dichloropropane           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014          |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

 CLIENT:
 Intera
 Client Sample ID:
 SG-05

 Lab Order:
 1406001
 Tag Number:
 247809

 Project:
 14166.01: Bell Trading Post
 Collection Date:
 6/2/2014

 Lab ID:
 1406001-005A
 Date Received:
 6/3/2014
 Matrix:
 SOIL GAS

| Analyses                      | Result | Limit | Qual | Units | DF | Date Analyzed |
|-------------------------------|--------|-------|------|-------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8   | 260B |       |    | Analyst: RB   |
| 2-Hexanone                    | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Dibromochloromethane          | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dibromoethane             | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Chlorobenzene                 | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,1,2-Tetrachloroethane     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Ethylbenzene                  | 2.7    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| m,p-Xylene                    | 6.6    | 10    | J    | ng/L  | 1  | 6/12/2014     |
| o-Xylene                      | 2.1    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| Styrene                       | 1.3    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| Bromoform                     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Isopropylbenzene              | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,1,2,2-Tetrachloroethane     | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Bromobenzene                  | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2,3-Trichloropropane        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| n-Propylbenzene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 2-Chlorotoluene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,3,5-Trimethylbenzene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 4-Chlorotoluene               | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| tert-Butylbenzene             | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2,4-Trimethylbenzene        | 5.0    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| sec-Butylbenzene              | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,3-Dichlorobenzene           | 3.4    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 4-Isopropyltoluene            | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,4-Dichlorobenzene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dichlorobenzene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| n-Butylbenzene                | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2-Dibromo-3-chloropropane   | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| 1,2,4-Trichlorobenzene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Hexachlorobutadiene           | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |
| Naphthalene                   | 3.5    | 5.0   | J    | ng/L  | 1  | 6/12/2014     |
| 1,2,3-Trichlorobenzene        | ND     | 5.0   |      | ng/L  | 1  | 6/12/2014     |

Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

**CLIENT:** Client Sample ID: SG-03DUP Intera Lab Order: 1406001 **Tag Number:** 247803 **Project:** 14166.01: Bell Trading Post Collection Date: 6/2/2014 Lab ID: 1406001-006A Matrix: SOIL GAS **Date Received:** 6/3/2014

| Analyses                      | Result | Limit Q | ual Units | DF | Date Analyzed |
|-------------------------------|--------|---------|-----------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8260  | В         |    | Analyst: RB   |
| Dichlorodifluoromethane       | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Chloromethane                 | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Vinyl chloride                | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Bromomethane                  | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Chloroethane                  | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Trichlorofluoromethane        | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 1,1-Dichloroethene            | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Freon-113                     | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Acetone                       | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| lodomethane                   | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Carbon disulfide              | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Methylene chloride            | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Acrylonitrile                 | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Methyl tert-butyl ether       | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| trans-1,2-Dichloroethene      | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 1,1-Dichloroethane            | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Vinyl acetate                 | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 2,2-Dichloropropane           | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 2-Butanone                    | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| cis-1,2-Dichloroethene        | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Bromochloromethane            | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Tetrahydrofuran               | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Chloroform                    | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 1,1,1-Trichloroethane         | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 1,1-Dichloropropene           | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Carbon tetrachloride          | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Benzene                       | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 1,2-Dichloroethane            | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Trichloroethene               | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 1,2-Dichloropropane           | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Dibromomethane                | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Bromodichloromethane          | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 4-Methyl-2-pentanone          | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 2-Chloroethyl vinyl ether     | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| cis-1,3-Dichloropropene       | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Toluene                       | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| trans-1,3-Dichloropropene     | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 1,1,2-Trichloroethane         | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| Tetrachloroethene             | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |
| 1,3-Dichloropropane           | ND     | 5.0     | ng/L      | 1  | 6/12/2014     |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε
- Value above quantitation range Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

 CLIENT:
 Intera
 Client Sample ID:
 SG-03DUP

 Lab Order:
 1406001
 Tag Number:
 247803

 Project:
 14166.01: Bell Trading Post
 Collection Date:
 6/2/2014

 Lab ID:
 1406001-006A
 Date Received:
 6/3/2014
 Matrix:
 SOIL GAS

| Analyses                      | Result | Limit | Qual Units | DF | Date Analyzed |
|-------------------------------|--------|-------|------------|----|---------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW82  | 60B        |    | Analyst: RB   |
| 2-Hexanone                    | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Dibromochloromethane          | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,2-Dibromoethane             | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Chlorobenzene                 | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,1,1,2-Tetrachloroethane     | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Ethylbenzene                  | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| m,p-Xylene                    | ND     | 10    | ng/L       | 1  | 6/12/2014     |
| o-Xylene                      | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Styrene                       | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Bromoform                     | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Isopropylbenzene              | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,1,2,2-Tetrachloroethane     | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Bromobenzene                  | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,2,3-Trichloropropane        | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| n-Propylbenzene               | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 2-Chlorotoluene               | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,3,5-Trimethylbenzene        | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 4-Chlorotoluene               | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| tert-Butylbenzene             | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,2,4-Trimethylbenzene        | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| sec-Butylbenzene              | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,3-Dichlorobenzene           | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 4-Isopropyltoluene            | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,4-Dichlorobenzene           | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,2-Dichlorobenzene           | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| n-Butylbenzene                | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,2-Dibromo-3-chloropropane   | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,2,4-Trichlorobenzene        | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Hexachlorobutadiene           | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| Naphthalene                   | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |
| 1,2,3-Trichlorobenzene        | ND     | 5.0   | ng/L       | 1  | 6/12/2014     |

Qualifiers: \* Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

**Date:** 13-Jun-14

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Vista GeoScience 24-Jun-14

**Lab Order:** 1406001

Client: Intera

**Project:** 14166.01: Bell Trading Post

| Sample ID    | Client Sample ID | <b>Collection Date</b> | Matrix   | Test Name                     | TCLP Date | Prep Date | <b>Analysis Date</b> |
|--------------|------------------|------------------------|----------|-------------------------------|-----------|-----------|----------------------|
| 1406001-001A | SG-01            | 6/2/2014               | Soil Gas | Volatile Organics in Soil Gas |           |           | 6/12/2014            |
| 1406001-002A | SG-02            |                        |          | Volatile Organics in Soil Gas |           |           | 6/12/2014            |
| 1406001-003A | SG-03            |                        |          | Volatile Organics in Soil Gas |           |           | 6/12/2014            |
| 1406001-004A | SG-04            |                        |          | Volatile Organics in Soil Gas |           |           | 6/12/2014            |
| 1406001-005A | SG-05            |                        |          | Volatile Organics in Soil Gas |           |           | 6/12/2014            |
| 1406001-006A | SG-03DUP         |                        |          | Volatile Organics in Soil Gas |           |           | 6/12/2014            |
| 1406001-007A | SG-02DUP         |                        |          | Volatile Organics in Soil Gas |           |           | 6/13/2014            |

**DATES REPORT** 

Vista GeoScience

Date: 13-Jun-14

CLIENT: Intera Work Order: 1406001

**Project:** 

# ANALYTICAL QC SUMMARY REPORT

TestCode: 8260\_SG

| Sample <b>MB</b> | SampTyp <b>MBLK</b> | TestCode: 8260_SG | Units: <b>ng/L</b> | Prep Date:                     | RunNo: <b>1665</b>  |  |  |  |
|------------------|---------------------|-------------------|--------------------|--------------------------------|---------------------|--|--|--|
| Client ID: ZZZZZ | Batch ID: R1665     | TestNo: SW8260B   |                    | Analysis 6/12/2014             | SeqNo: <b>17667</b> |  |  |  |
| Analyte          | Result              | PQL SPK value SPk | K Ref Val %REC     | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |  |  |  |

| Analyte                                      | Result   | PQL        |
|----------------------------------------------|----------|------------|
| Dichlorodifluoromethane                      | ND       | 5.0        |
| Chloromethane                                | ND       | 5.0        |
| Vinyl chloride                               | ND       | 5.0        |
| Bromomethane                                 | ND       | 5.0        |
| Chloroethane                                 | ND       | 5.0        |
| Trichlorofluoromethane                       | ND       | 5.0        |
| 1,1-Dichloroethene                           | ND       | 5.0        |
| Freon-113                                    | ND       | 5.0        |
| Acetone                                      | ND       | 5.0        |
| lodomethane                                  | ND       | 5.0        |
| Carbon disulfide                             | ND       | 5.0        |
| Methylene chloride                           | ND       | 5.0        |
| Acrylonitrile                                | ND       | 5.0        |
| Methyl tert-butyl ether                      | ND       | 5.0        |
| trans-1,2-Dichloroethene                     | ND       | 5.0        |
| 1,1-Dichloroethane                           | ND       | 5.0        |
| Vinyl acetate                                | ND       | 5.0        |
| 2,2-Dichloropropane                          | ND       | 5.0        |
| 2-Butanone                                   | ND       | 5.0        |
| cis-1,2-Dichloroethene<br>Bromochloromethane | ND<br>ND | 5.0        |
|                                              | ND<br>ND | 5.0<br>5.0 |
| Tetrahydrofuran<br>Chloroform                | ND<br>ND | 5.0<br>5.0 |
| 1,1,1-Trichloroethane                        | ND<br>ND | 5.0        |
| 1,1-Dichloropropene                          | ND<br>ND | 5.0        |
| Carbon tetrachloride                         | ND<br>ND | 5.0        |
| Benzene                                      | ND       | 5.0        |
| 1,2-Dichloroethane                           | ND       | 5.0        |
| Trichloroethene                              | ND       | 5.0        |
|                                              |          |            |

14166.01: Bell Trading Post

Qualifiers: E Value above quantitation range

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

TestCode: 8260\_SG

1406001 **Project:** 14166.01: Bell Trading Post

Intera

**CLIENT:** 

Work Order:

| Sample <b>MB</b>          | SampTyp MBLK           | TestCode: | 8260_SG   | Units: ng/L             |                    | Prep Da  | ite:      |                    | RunNo: <b>1665</b> |               |      |  |  |
|---------------------------|------------------------|-----------|-----------|-------------------------|--------------------|----------|-----------|--------------------|--------------------|---------------|------|--|--|
| Client ID: ZZZZZ          | Batch ID: <b>R1665</b> | TestNo:   | SW8260B   |                         | Analysis 6/12/2014 |          |           |                    | SeqNo: <b>176</b>  | 67            |      |  |  |
| Analyte                   | Result                 | PQL S     | SPK value | SPK Ref Val             | %REC               | LowLimit | HighLimit | RPD Ref Val        | %RPD               | RPDLimit      | Qual |  |  |
| 1,2-Dichloropropane       | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Dibromomethane            | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Bromodichloromethane      | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 4-Methyl-2-pentanone      | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 2-Chloroethyl vinyl ether | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| cis-1,3-Dichloropropene   | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Toluene                   | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| trans-1,3-Dichloropropene | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 1,1,2-Trichloroethane     | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Tetrachloroethene         | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 1,3-Dichloropropane       | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 2-Hexanone                | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Dibromochloromethane      | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 1,2-Dibromoethane         | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Chlorobenzene             | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 1,1,1,2-Tetrachloroethane | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Ethylbenzene              | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| m,p-Xylene                | ND                     | 10        |           |                         |                    |          |           |                    |                    |               |      |  |  |
| o-Xylene                  | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Styrene                   | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Bromoform                 | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Isopropylbenzene          | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 1,1,2,2-Tetrachloroethane | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| Bromobenzene              | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 1,2,3-Trichloropropane    | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| n-Propylbenzene           | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 2-Chlorotoluene           | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 1,3,5-Trimethylbenzene    | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 4-Chlorotoluene           | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| tert-Butylbenzene         | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
| 1,2,4-Trimethylbenzene    | ND                     | 5.0       |           |                         |                    |          |           |                    |                    |               |      |  |  |
|                           | quantitation range     |           |           | g times for preparation |                    | exceeded |           | Analyte detected b |                    |               |      |  |  |
| ND Not Detected           | at the Reporting Limit |           | R RPD or  | itside accepted recove  | ery limits         |          | S S       | Spike Recovery ou  | tside accepted re  | covery limits |      |  |  |

CLIENT: Intera
Work Order: 1406001

ANALYTICAL QC SUMMARY REPORT

**Project:** 14166.01: Bell Trading Post

TestCode: 8260\_SG

| Sample <b>MB</b> Client ID: <b>ZZZZZ</b> | SampTyp MBLK<br>Batch ID: R1665 | TestCode: 8260_SC<br>TestNo: SW8260 | J           | Prep<br>An  | Date:<br>alysis <b>6/12/2014</b> | RunNo: <b>1665</b><br>SeqNo: <b>17667</b> |
|------------------------------------------|---------------------------------|-------------------------------------|-------------|-------------|----------------------------------|-------------------------------------------|
| Analyte                                  | Result                          | PQL SPK value                       | SPK Ref Val | %REC LowLin | nit HighLimit RPD Ref Val        | %RPD RPDLimit Qual                        |
| sec-Butylbenzene                         | ND                              | 5.0                                 |             |             |                                  |                                           |
| 1,3-Dichlorobenzene                      | ND                              | 5.0                                 |             |             |                                  |                                           |
| 4-Isopropyltoluene                       | ND                              | 5.0                                 |             |             |                                  |                                           |
| 1,4-Dichlorobenzene                      | ND                              | 5.0                                 |             |             |                                  |                                           |
| 1,2-Dichlorobenzene                      | ND                              | 5.0                                 |             |             |                                  |                                           |
| n-Butylbenzene                           | ND                              | 5.0                                 |             |             |                                  |                                           |
| 1,2-Dibromo-3-chloropropane              | ND                              | 5.0                                 |             |             |                                  |                                           |
| 1,2,4-Trichlorobenzene                   | ND                              | 5.0                                 |             |             |                                  |                                           |
| Hexachlorobutadiene                      | ND                              | 5.0                                 |             |             |                                  |                                           |
| Naphthalene                              | ND                              | 5.0                                 |             |             |                                  |                                           |
| 1,2,3-Trichlorobenzene                   | ND                              | 5.0                                 |             |             |                                  |                                           |

Qualifiers: E Value above quantitation range

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

| C        | Chain-of-Custody Record |            |                                       | Turn-Arc    | ound -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time:      |                      |              |                  |                                                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 A 9              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | N 3. 8'       |                                                                                   | a -                   | 50 R 54     | a               |           | . AS. 0        |             |             |
|----------|-------------------------|------------|---------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|--------------|------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-----------------------------------------------------------------------------------|-----------------------|-------------|-----------------|-----------|----------------|-------------|-------------|
| Client:  | In tea                  | ra         |                                       |             | Stan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dard       | □ Rush               |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 |           | NT<br>\TC      |             |             |
|          |                         |            |                                       |             | Project N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vame       | 7,                   |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | www.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |               |                                                                                   |                       |             |                 | 4 49-59 1 | a. 14 - Van    | 7 B TOL 1   | М           |
| Mailing  | Address                 | : 0M       | File                                  |             | Bel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T          | rading               | Post         |                  | 49                                               | 01 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | www<br>ns Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |                                                                                   |                       |             |                 | 109       |                |             |             |
|          |                         |            | , , , , , , , , , , , , , , , , , , , |             | Project #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>‡</b> : |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 5-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |               | -                                                                                 | -                     |             | 4107            |           |                |             |             |
| Phone :  | #: 50                   | 5 24       | 6 1600                                |             | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ervicescon meses | \$540 Beer    | adalem kolást                                                                     | Mario in General Con- | uest        |                 |           |                |             |             |
| email o  | r Fax#:                 |            |                                       |             | Project N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mana       | ger:                 |              | _                | (1) (3) (3) (4) (4) (4) (4) (4) (4)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 |           |                |             |             |
| QA/QC i  | Package:<br>dard        |            | □ Level 4 (Full                       | Validation) | Jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oe -       | traey                | •            | (8021)           | TPH (Gas only)                                   | / DRO / MRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIMS)            |               | PO4,S(                                                                            | PCB's                 |             |                 |           |                |             |             |
| Accredi  |                         |            |                                       |             | Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : C.       | Stort                | was a second | ₩.               | TMB's (GTPH (GD / DRC 8.1) (270 SIN 8.8) (8082 F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 |           |                |             |             |
| □ NEL    | AP                      | □ Othe     |                                       |             | On Ice:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | □ Yes                | □ No         | <del> </del>   + | +                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>%</u>           | 904.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8270             |               | ر<br>ق                                                                            | ~                     |             | <b>₹</b>        |           |                |             | or N)       |
| EDD      | (Type)                  | EK         | GC Q                                  |             | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp       | perature:            |              | BE               | BE.                                              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pd 4               | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0              | stals         | ž                                                                                 | jde                   | <b>a</b>    | 3               | enance.   |                |             |             |
| Date     | Time                    | Matrix     | Sample Re                             | equest ID   | Contaii<br>Type ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Preservative<br>Type | HEAL No.     | BTEX + MTBE      | BTEX + MTBE                                      | TPH 8015B (GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TPH (Method 418.1) | EDB (Method 504.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PAH's (8310 or   | RCKA 8 Metals | Anions (F,Ci,NO <sub>3</sub> ,NO <sub>2</sub> ,PO <sub>4</sub> ,SO <sub>4</sub> ) | 8081 Pesticides       | 8260B (VOA) | 8270 (Semi-VOA) | 2020      |                |             | Air Bubbles |
|          |                         |            | 241471                                | 156-01      | 12tona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X          |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             | Ž               | 1/2/7     | ر و ب          | ٦           |             |
| 12/14    | 1023                    | ACC        | 249472                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 | T         | Į.             | N/          |             |
| •        | 1140                    | •          | 249479                                | 155-02      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             | ]               | 14        |                |             |             |
| d        | 1147                    |            | 249480                                | 1,54-02     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             | ŀ               | 4         | - <del> </del> |             | 4           |
|          | 241                     | 4          | 249473                                | 64-03       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 | K         |                |             | 1/2         |
| •        | 1249                    | Ęź.        | 247803/                               | 154-03      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 | Y         |                | <u></u>     |             |
| ·-       | 1443                    | <u> </u>   | 249477                                | , SG-041    | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 |           | ্ৰ             |             |             |
| •        | 1450                    |            | 248478                                | 154-04      | and the state of t |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 | X         |                | 2           |             |
|          | 1414                    |            | 247809/                               | 1,86-05     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /          |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             | <u> </u>        | 279       | (2)            | ١.          |             |
| <u>.</u> | 1421                    |            | 249476/                               | 56,-05      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\perp$          |               |                                                                                   | $\perp$               |             |                 | X         |                |             |             |
|          |                         |            | · · ·                                 | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |              | -                |                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | _             |                                                                                   |                       |             | $\dashv$        |           |                | +           |             |
| Date:    | Time:                   | Relinquish | ed by:                                |             | Received t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | by:        |                      | Date Time    | Rer              | nark                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                   |                       |             |                 |           |                |             |             |
| -3-14    |                         |            | •                                     |             | Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TO E       | WARI AF              | 6-3-14 0820  |                  | 9                                                | <u>i                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | } L                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) .              |               | )                                                                                 | O                     | C           | 9               | Nφ        | + \            | ) Z (       | 5/          |
| Date:    | Time:                   | Relinquish | ed by:                                |             | Received b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oy:        |                      | Date Time    | 3                | ر<br>۱۰                                          | ٠<br>١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10wl             |               | g L                                                                               | િ (                   | , m         | SG              | ~         | 10             | :<br>'*\``` | 15!         |
|          |                         |            | <u></u>                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      | LAAI         | Low              | erso                                             | the state of the s | ATE                | e de la composition della comp | 08               | EC 65         | 6                                                                                 | e in mage             | 0           | 5               |           |                |             |             |

EPA Method 8260A

Lab File ID: c:\varianws\data\14f12\SG-1.SMS Acquisition Date:

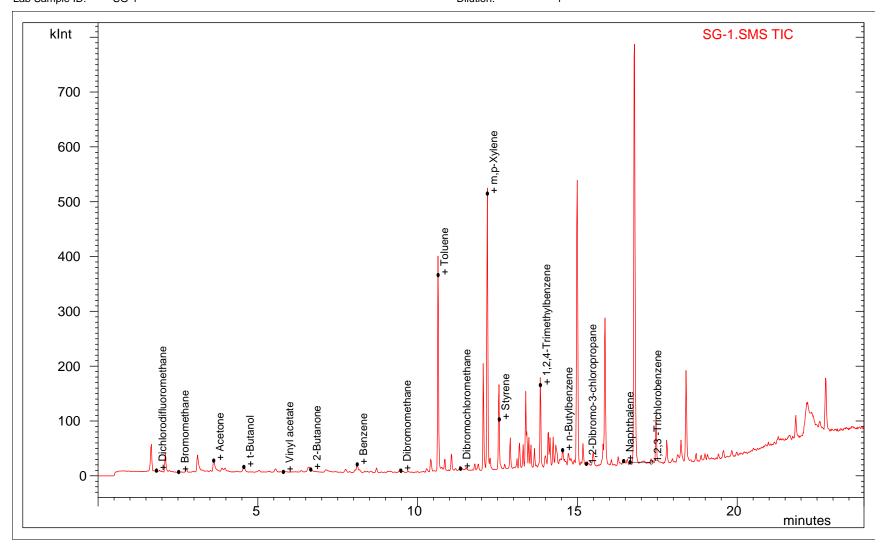
6/12/2014 18:05

Calibration File:

C:\VarianWS\Data\11I06\EX-200ng 8260 std.SMS

Cal. Sample Date Range:

Date\_


6/11/2014 16:50 6/11/2014 20:55

EPA Sample No: SG-1 Lab Sample ID: SG-1

Approved\_

Operator:

RΒ Dilution: 1



EPA Method 8260A

Lab File ID: c:\varianws\data\14f12\SG-2.SMS

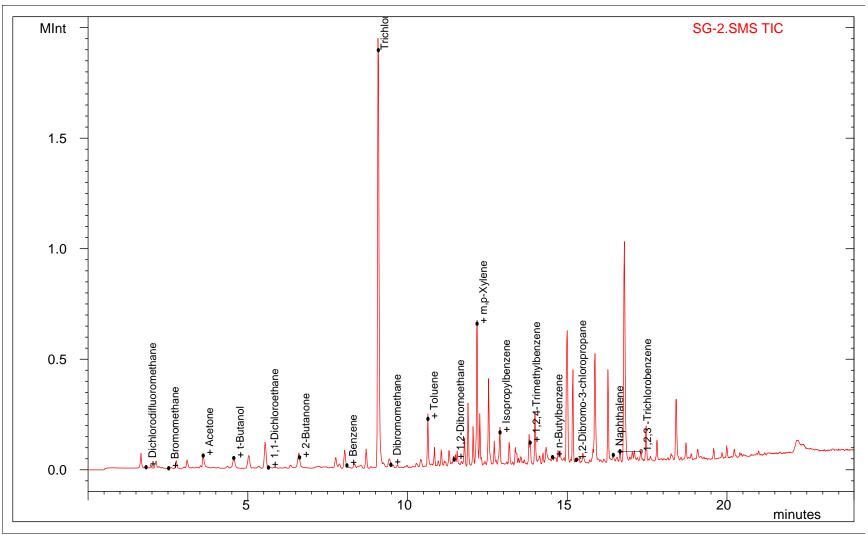
SG-2

SG-2

Acquisition Date:

EPA Sample No:

Lab Sample ID:


6/12/2014 18:37

12014 10.37

Calibration File: C:\VarianWS\Data\11106\EX-200ng 8260 std.SMS

Cal. Sample Date Range: 6/11/2014 16:50 6/11/2014 20:55

Operator: RB
Dilution: 1



Approved\_\_\_\_\_\_ Date\_\_\_\_\_

EPA Method 8260A

Lab File ID: c:\varianws\data\14f12\SG-3.SMS Acquisition Date:

SG-3

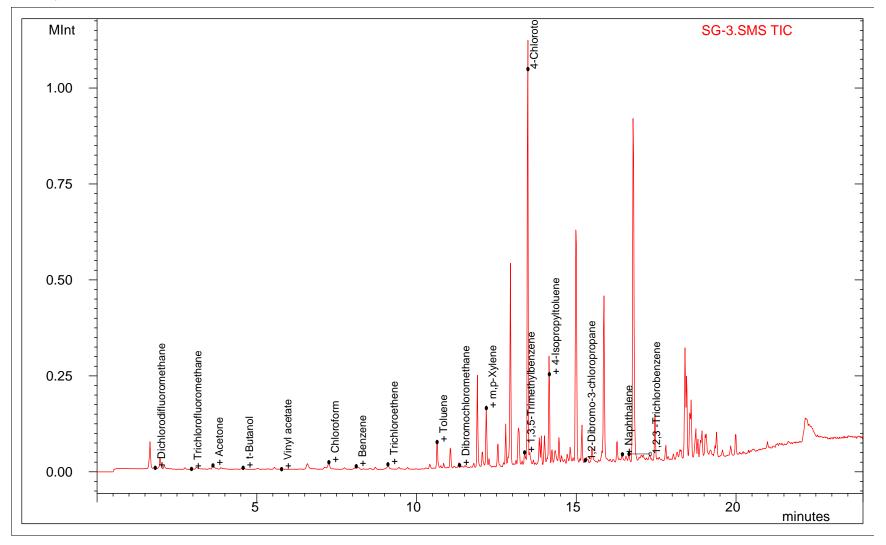
Calibration File:

C:\VarianWS\Data\11I06\EX-200ng 8260 std.SMS

6/12/2014 19:09

Cal. Sample Date Range: 6/11/2014 16:50

6/11/2014 20:55


EPA Sample No: Lab Sample ID:

SG-3

Operator: RΒ

Dilution:

1



Approved\_ Date\_

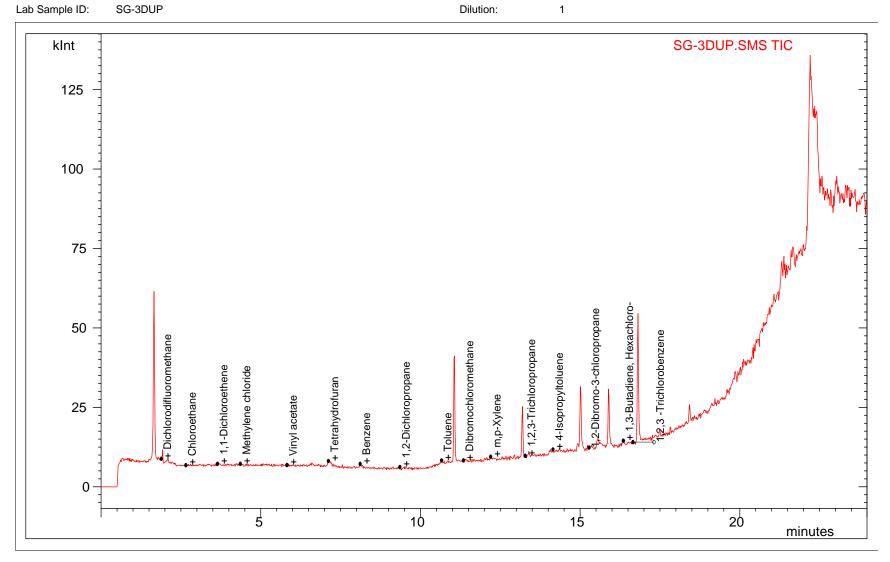
EPA Method 8260A

Lab File ID: c:\varianws\data\14f12\SG-3DUP.SMS

C:\VarianWS\Data\11I06\EX-200ng 8260 std.SMS Calibration File:

Acquisition Date: SG-3DUP Cal. Sample Date Range: 6/11/2014 16:50

Date\_


6/11/2014 20:55

EPA Sample No:

Approved\_

6/12/2014 20:45

Operator: RB



EPA Method 8260A

Lab File ID: c:\varianws\data\14f12\SG-4.SMS Acquisition Date:

6/12/2014 19:41

Calibration File:

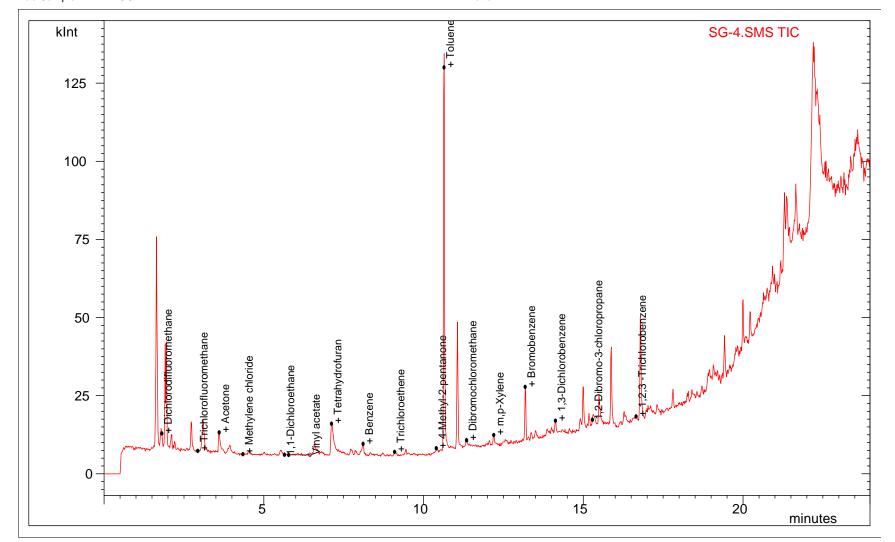
C:\VarianWS\Data\11I06\EX-200ng 8260 std.SMS 16:50

Cal. Sample Date Range:

6/11/2014

6/11/2014 20:55

EPA Sample No: Lab Sample ID:


Approved\_

SG-4 SG-4 Operator:

Dilution: 1

RΒ

Date\_



EPA Method 8260A

Lab File ID: c:\varianws\data\14f12\SG-5.SMS Acquisition Date:

Calibration File:

C:\VarianWS\Data\11I06\EX-200ng 8260 std.SMS

Cal. Sample Date Range:

6/11/2014

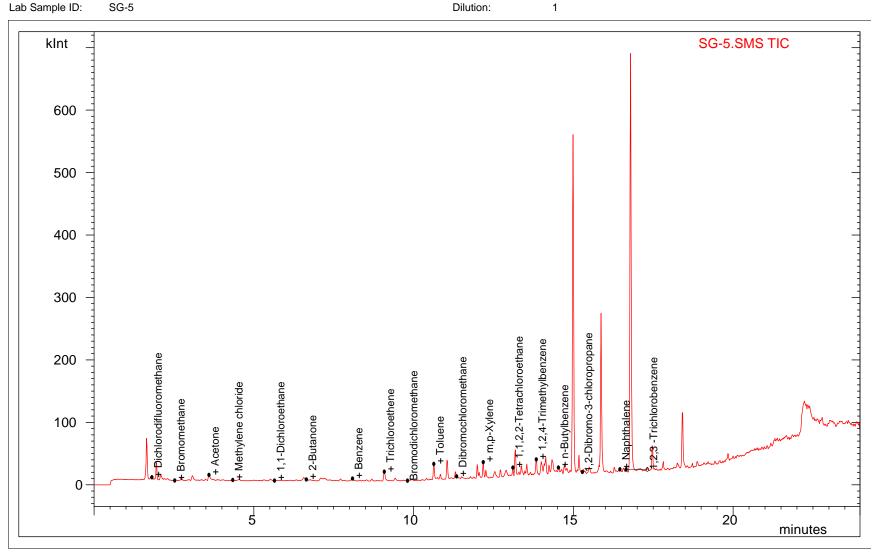
6/11/2014 20:55

EPA Sample No:

Approved\_

6/12/2014 20:13

Operator:


RΒ

Date\_

16:50

SG-5 SG-5 Lab Sample ID:

Dilution:



EPA Method 8260A

Lab File ID: c:\varianws\data\14f12\blank.SMS Calibration File:

C:\VarianWS\Data\11I06\EX-200ng 8260 std.SMS

16:50

Acquisition Date:

6/12/2014 17:33

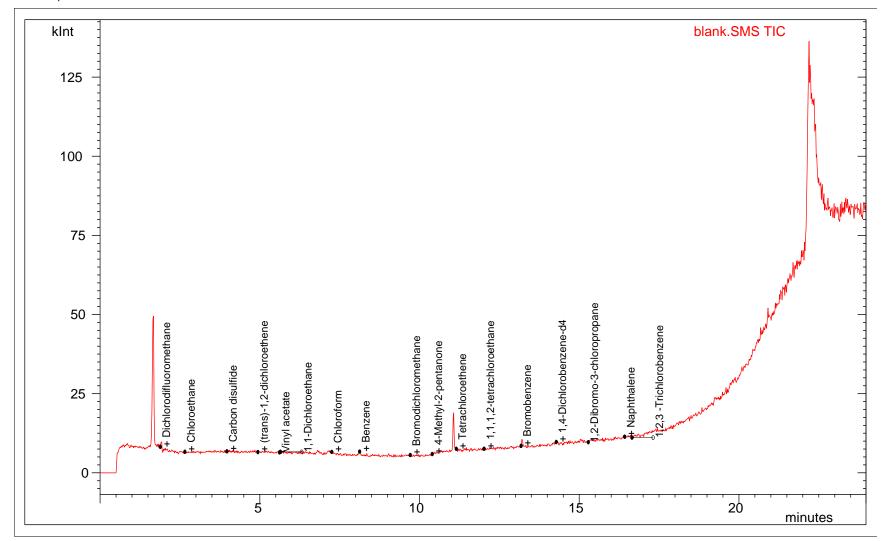
Cal. Sample Date Range:

6/11/2014

Date\_

6/11/2014 20:55

EPA Sample No: Lab Sample ID:


Approved\_

blank blank Operator:

RΒ

1





Vista GeoScience

Date: 24-Jun-14

CLIENT: Intera Work Order: 1406001

**Project:** 

# ANALYTICAL QC SUMMARY REPORT

TestCode: 8260\_SG

%RPD RPDLimit Qual

%REC LowLimit HighLimit RPD Ref Val

| Sample     | MB    | SampTyp <b>MBLK</b> | TestCode: 8260_SG | Units: ng/L | Prep Date:         | RunNo: 1665         |
|------------|-------|---------------------|-------------------|-------------|--------------------|---------------------|
| Client ID: | ZZZZZ | Batch ID: R1665     | TestNo: SW8260B   |             | Analysis 6/12/2014 | SeqNo: <b>17667</b> |

SPK value SPK Ref Val

| Analyte                  | Result | PQL |
|--------------------------|--------|-----|
| Dichlorodifluoromethane  | ND     | 5.0 |
| Chloromethane            | ND     | 5.0 |
| Vinyl chloride           | ND     | 5.0 |
| Bromomethane             | ND     | 5.0 |
| Chloroethane             | ND     | 5.0 |
| Trichlorofluoromethane   | ND     | 5.0 |
| 1,1-Dichloroethene       | ND     | 5.0 |
| Freon-113                | ND     | 5.0 |
| Acetone                  | ND     | 5.0 |
| lodomethane              | ND     | 5.0 |
| Carbon disulfide         | ND     | 5.0 |
| Methylene chloride       | ND     | 5.0 |
| Acrylonitrile            | ND     | 5.0 |
| Methyl tert-butyl ether  | ND     | 5.0 |
| trans-1,2-Dichloroethene | ND     | 5.0 |
| 1,1-Dichloroethane       | ND     | 5.0 |
| Vinyl acetate            | ND     | 5.0 |
| 2,2-Dichloropropane      | ND     | 5.0 |
| 2-Butanone               | ND     | 5.0 |
| cis-1,2-Dichloroethene   | ND     | 5.0 |
| Bromochloromethane       | ND     | 5.0 |
| Tetrahydrofuran          | ND     | 5.0 |
| Chloroform               | ND     | 5.0 |
| 1,1,1-Trichloroethane    | ND     | 5.0 |
| 1,1-Dichloropropene      | ND     | 5.0 |
| Carbon tetrachloride     | ND     | 5.0 |
| Benzene                  | ND     | 5.0 |
| 1,2-Dichloroethane       | ND     | 5.0 |
| Trichloroethene          | ND     | 5.0 |

14166.01: Bell Trading Post

Qualifiers: E Value above quantitation range

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

TestCode: 8260\_SG

1406001 **Project:** 14166.01: Bell Trading Post

Intera

**CLIENT:** 

Work Order:

| Sample <b>MB</b>          | SampTyp MBLK TestCode: 8260_SG Units: ng/L Prep |        |           |                       | Prep Da    | ite:       | RunNo: <b>1665</b>  |                    |                    |               |      |
|---------------------------|-------------------------------------------------|--------|-----------|-----------------------|------------|------------|---------------------|--------------------|--------------------|---------------|------|
| Client ID: ZZZZZ          | Batch ID: <b>R1665</b>                          | TestNo | : SW8260B |                       |            | Analy      | sis <b>6/12/2</b> 0 | 014                | SeqNo: 176         | 67            |      |
| Analyte                   | Result                                          | PQL    | SPK value | SPK Ref Val           | %REC       | LowLimit   | HighLimit           | RPD Ref Val        | %RPD               | RPDLimit      | Qual |
| 1,2-Dichloropropane       | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Dibromomethane            | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Bromodichloromethane      | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 4-Methyl-2-pentanone      | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 2-Chloroethyl vinyl ether | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| cis-1,3-Dichloropropene   | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Toluene                   | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| trans-1,3-Dichloropropene | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 1,1,2-Trichloroethane     | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Tetrachloroethene         | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 1,3-Dichloropropane       | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 2-Hexanone                | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Dibromochloromethane      | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 1,2-Dibromoethane         | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Chlorobenzene             | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 1,1,1,2-Tetrachloroethane | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Ethylbenzene              | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| m,p-Xylene                | ND                                              | 10     |           |                       |            |            |                     |                    |                    |               |      |
| o-Xylene                  | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Styrene                   | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Bromoform                 | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Isopropylbenzene          | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 1,1,2,2-Tetrachloroethane | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| Bromobenzene              | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 1,2,3-Trichloropropane    | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| n-Propylbenzene           | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 2-Chlorotoluene           | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 1,3,5-Trimethylbenzene    | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 4-Chlorotoluene           | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| tert-Butylbenzene         | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
| 1,2,4-Trimethylbenzene    | ND                                              | 5.0    |           |                       |            |            |                     |                    |                    |               |      |
|                           | e quantitation range                            |        |           | times for preparation |            | s exceeded |                     | Analyte detected b |                    |               |      |
| ND Not Detecte            | d at the Reporting Limit                        |        | R RPD ou  | tside accepted recov  | ery limits |            | S                   | Spike Recovery ou  | itside accepted re | covery limits |      |

TestCode: 8260\_SG

1406001 **Project:** 14166.01: Bell Trading Post

Intera

**CLIENT:** 

Work Order:

| Sample <b>MB</b>            | SampTyp MBLK                               | TestCode: 8260_SG Units: ng/l                           | L Prep Date:                        | RunNo: 1665                                                   |
|-----------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|
| Client ID: ZZZZZ            | Batch ID: R1665                            | TestNo: SW8260B                                         | Analysis 6/12/2014                  | SeqNo: <b>17667</b>                                           |
| Analyte                     | Result                                     | PQL SPK value SPK Ref Val                               | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                                            |
| sec-Butylbenzene            | ND                                         | 5.0                                                     |                                     |                                                               |
| 1,3-Dichlorobenzene         | ND                                         | 5.0                                                     |                                     |                                                               |
| 4-Isopropyltoluene          | ND                                         | 5.0                                                     |                                     |                                                               |
| 1,4-Dichlorobenzene         | ND                                         | 5.0                                                     |                                     |                                                               |
| 1,2-Dichlorobenzene         | ND                                         | 5.0                                                     |                                     |                                                               |
| n-Butylbenzene              | ND                                         | 5.0                                                     |                                     |                                                               |
| 1,2-Dibromo-3-chloropropane | ND                                         | 5.0                                                     |                                     |                                                               |
| 1,2,4-Trichlorobenzene      | ND                                         | 5.0                                                     |                                     |                                                               |
| Hexachlorobutadiene         | ND                                         | 5.0                                                     |                                     |                                                               |
| Naphthalene                 | ND                                         | 5.0                                                     |                                     |                                                               |
| 1,2,3-Trichlorobenzene      | ND                                         | 5.0                                                     |                                     |                                                               |
|                             |                                            |                                                         |                                     |                                                               |
| Sample <b>MBLK</b>          | SampTyp MBLK                               | TestCode: 8260_SG Units: ng/l                           | L Prep Date:                        | RunNo: <b>1667</b>                                            |
| Client ID: ZZZZZ            | Batch ID: R1667                            | TestNo: SW8260B                                         | Analysis 6/13/2014                  | SeqNo: <b>17677</b>                                           |
| Analyte                     | Result                                     | PQL SPK value SPK Ref Val                               | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                                            |
| Dichlorodifluoromethane     | ND                                         | 5.0                                                     |                                     |                                                               |
| Chloromethane               | ND                                         | 5.0                                                     |                                     |                                                               |
| Vinyl chloride              | ND                                         | 5.0                                                     |                                     |                                                               |
| Bromomethane                | ND                                         | 5.0                                                     |                                     |                                                               |
| Chloroethane                | ND                                         | 5.0                                                     |                                     |                                                               |
| Trichlorofluoromethane      | ND                                         | 5.0                                                     |                                     |                                                               |
| 1,1-Dichloroethene          | ND                                         | 5.0                                                     |                                     |                                                               |
| Freon-113                   | ND                                         | 5.0                                                     |                                     |                                                               |
| Acetone                     | ND                                         | 5.0                                                     |                                     |                                                               |
| lodomethane                 | ND                                         | 5.0                                                     |                                     |                                                               |
| Carbon disulfide            | ND                                         | 5.0                                                     |                                     |                                                               |
| Methylene chloride          | ND                                         | 5.0                                                     |                                     |                                                               |
| Acrylonitrile               | ND                                         | 5.0                                                     |                                     |                                                               |
| Ovalifiana E Value -1       | rontitation non ac                         | II Halding times for a server                           | untion on analysis arounded I Ar-1  | halary avantitation limits                                    |
|                             | nantitation range<br>t the Reporting Limit | H Holding times for prepar<br>R RPD outside accepted re |                                     | below quantitation limits<br>outside accepted recovery limits |

Page 3 of 5

TestCode: 8260\_SG

1406001 **Project:** 14166.01: Bell Trading Post

Intera

**CLIENT:** 

Work Order:

| Sample MBLK               | SampTyp <b>MBLK</b>                        | TestCode: | 8260_SG Units: ng/L  | Prep Da       | te:                   | RunNo: <b>1667</b>                                            |
|---------------------------|--------------------------------------------|-----------|----------------------|---------------|-----------------------|---------------------------------------------------------------|
| Client ID: ZZZZZ          | Batch ID: R1667                            | TestNo:   | SW8260B              | Analy         | sis <b>6/13/2014</b>  | SeqNo: <b>17677</b>                                           |
| Analyte                   | Result                                     | PQL SI    | PK value SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit Qual                                            |
| Methyl tert-butyl ether   | ND                                         | 5.0       |                      |               |                       |                                                               |
| trans-1,2-Dichloroethene  | ND                                         | 5.0       |                      |               |                       |                                                               |
| 1,1-Dichloroethane        | ND                                         | 5.0       |                      |               |                       |                                                               |
| Vinyl acetate             | ND                                         | 5.0       |                      |               |                       |                                                               |
| 2,2-Dichloropropane       | ND                                         | 5.0       |                      |               |                       |                                                               |
| 2-Butanone                | ND                                         | 5.0       |                      |               |                       |                                                               |
| cis-1,2-Dichloroethene    | ND                                         | 5.0       |                      |               |                       |                                                               |
| Bromochloromethane        | ND                                         | 5.0       |                      |               |                       |                                                               |
| Tetrahydrofuran           | ND                                         | 5.0       |                      |               |                       |                                                               |
| Chloroform                | ND                                         | 5.0       |                      |               |                       |                                                               |
| 1,1,1-Trichloroethane     | ND                                         | 5.0       |                      |               |                       |                                                               |
| 1,1-Dichloropropene       | ND                                         | 5.0       |                      |               |                       |                                                               |
| Carbon tetrachloride      | ND                                         | 5.0       |                      |               |                       |                                                               |
| Benzene                   | ND                                         | 5.0       |                      |               |                       |                                                               |
| 1,2-Dichloroethane        | ND                                         | 5.0       |                      |               |                       |                                                               |
| Trichloroethene           | ND                                         | 5.0       |                      |               |                       |                                                               |
| 1,2-Dichloropropane       | ND                                         | 5.0       |                      |               |                       |                                                               |
| Dibromomethane            | ND                                         | 5.0       |                      |               |                       |                                                               |
| Bromodichloromethane      | ND                                         | 5.0       |                      |               |                       |                                                               |
| 4-Methyl-2-pentanone      | ND                                         | 5.0       |                      |               |                       |                                                               |
| 2-Chloroethyl vinyl ether | ND                                         | 5.0       |                      |               |                       |                                                               |
| cis-1,3-Dichloropropene   | ND                                         | 5.0       |                      |               |                       |                                                               |
| Toluene                   | ND                                         | 5.0       |                      |               |                       |                                                               |
| trans-1,3-Dichloropropene | ND                                         | 5.0       |                      |               |                       |                                                               |
| 1,1,2-Trichloroethane     | ND                                         | 5.0       |                      |               |                       |                                                               |
| Tetrachloroethene         | ND                                         | 5.0       |                      |               |                       |                                                               |
| 1,3-Dichloropropane       | ND                                         | 5.0       |                      |               |                       |                                                               |
| 2-Hexanone                | ND                                         | 5.0       |                      |               |                       |                                                               |
| Dibromochloromethane      | ND                                         | 5.0       |                      |               |                       |                                                               |
| 1,2-Dibromoethane         | ND                                         | 5.0       |                      |               |                       |                                                               |
| Chlorobenzene             | ND                                         | 5.0       |                      |               |                       |                                                               |
|                           | nantitation range<br>t the Reporting Limit | H<br>R    | 0 1 1                |               | •                     | below quantitation limits<br>outside accepted recovery limits |

TestCode: 8260\_SG

Work Order: 1406001 Project: 14166.01: Bell Trading Post

Intera

**CLIENT:** 

| Sample MBLK Client ID: ZZZZZ | SampTyp MBLK Batch ID: R1667 | TestCode:<br>TestNo: | 8260_SG<br>SW8260B | Units: ng/L | Prep Date: Analysis 6/13/2014 |          |           | 14          | RunNo: <b>1667</b><br>SeqNo: <b>17677</b> |          |      |
|------------------------------|------------------------------|----------------------|--------------------|-------------|-------------------------------|----------|-----------|-------------|-------------------------------------------|----------|------|
| Analyte                      | Result                       | PQL S                | SPK value          | SPK Ref Val | %REC                          | LowLimit | HighLimit | RPD Ref Val | %RPD                                      | RPDLimit | Qual |
| 1,1,1,2-Tetrachloroethane    | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| Ethylbenzene                 | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| m,p-Xylene                   | ND                           | 10                   |                    |             |                               |          |           |             |                                           |          |      |
| o-Xylene                     | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| Styrene                      | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| Bromoform                    | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| Isopropylbenzene             | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,1,2,2-Tetrachloroethane    | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| Bromobenzene                 | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,2,3-Trichloropropane       | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| n-Propylbenzene              | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 2-Chlorotoluene              | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,3,5-Trimethylbenzene       | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 4-Chlorotoluene              | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| tert-Butylbenzene            | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,2,4-Trimethylbenzene       | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| sec-Butylbenzene             | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,3-Dichlorobenzene          | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 4-Isopropyltoluene           | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,4-Dichlorobenzene          | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,2-Dichlorobenzene          | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| n-Butylbenzene               | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,2-Dibromo-3-chloropropane  | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,2,4-Trichlorobenzene       | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| Hexachlorobutadiene          | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| Naphthalene                  | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
| 1,2,3-Trichlorobenzene       | ND                           | 5.0                  |                    |             |                               |          |           |             |                                           |          |      |
|                              |                              |                      |                    |             |                               |          |           |             |                                           |          |      |

**Qualifiers:** E Value above quantitation range

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

# Vista GeoScience

**CLIENT:** Client Sample ID: SG-02DUP Intera

Lab Order: 1406001 Tag Number: **Project:** 14166.01: Bell Trading Post **Collection Date:** 

Lab ID: 1406001-007A **Date Received:** 6/3/2014 Matrix: SOIL GAS

| Analyses                      | Result | Limit | Limit Qual Units DF Date |      |   |             |  |  |
|-------------------------------|--------|-------|--------------------------|------|---|-------------|--|--|
| VOCS IN SOIL GAS BY ATD/GC/MS |        | SW8   | 260B                     |      |   | Analyst: RB |  |  |
| Dichlorodifluoromethane       | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Chloromethane                 | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Vinyl chloride                | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Bromomethane                  | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Chloroethane                  | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Trichlorofluoromethane        | 4.1    | 5.0   | J                        | ng/L | 1 | 6/13/2014   |  |  |
| 1,1-Dichloroethene            | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Freon-113                     | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Acetone                       | 320    | 5.0   | Е                        | ng/L | 1 | 6/13/2014   |  |  |
| lodomethane                   | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Carbon disulfide              | 11     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Methylene chloride            | 1.3    | 5.0   | J                        | ng/L | 1 | 6/13/2014   |  |  |
| Acrylonitrile                 | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Methyl tert-butyl ether       | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| trans-1,2-Dichloroethene      | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 1,1-Dichloroethane            | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Vinyl acetate                 | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 2,2-Dichloropropane           | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 2-Butanone                    | 46     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| cis-1,2-Dichloroethene        | 1.6    | 5.0   | J                        | ng/L | 1 | 6/13/2014   |  |  |
| Bromochloromethane            | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Tetrahydrofuran               | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Chloroform                    | 6.8    | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 1,1,1-Trichloroethane         | 1.3    | 5.0   | J                        | ng/L | 1 | 6/13/2014   |  |  |
| 1,1-Dichloropropene           | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Carbon tetrachloride          | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Benzene                       | 10     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 1,2-Dichloroethane            | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Trichloroethene               | 1800   | 5.0   | Е                        | ng/L | 1 | 6/13/2014   |  |  |
| 1,2-Dichloropropane           | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Dibromomethane                | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Bromodichloromethane          | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 4-Methyl-2-pentanone          | 9.6    | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 2-Chloroethyl vinyl ether     | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| cis-1,3-Dichloropropene       | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Toluene                       | 62     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| trans-1,3-Dichloropropene     | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 1,1,2-Trichloroethane         | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| Tetrachloroethene             | 12     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |
| 1,3-Dichloropropane           | ND     | 5.0   |                          | ng/L | 1 | 6/13/2014   |  |  |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε
- Value above quantitation range Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

**Date:** 24-Jun-14

- H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

# Vista GeoScience

**CLIENT:** Client Sample ID: SG-02DUP Intera

Lab Order: 1406001 Tag Number: **Project:** 14166.01: Bell Trading Post **Collection Date:** 

Lab ID: 1406001-007A **Date Received:** 6/3/2014 Matrix: SOIL GAS

| Analyses                      |     |     | Qual | Units | DF | <b>Date Analyzed</b> |
|-------------------------------|-----|-----|------|-------|----|----------------------|
| VOCS IN SOIL GAS BY ATD/GC/MS |     | SW8 | 260B |       |    | Analyst: <b>RB</b>   |
| 2-Hexanone                    | 7.3 | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| Dibromochloromethane          | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,2-Dibromoethane             | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| Chlorobenzene                 | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,1,1,2-Tetrachloroethane     | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| Ethylbenzene                  | 7.8 | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| m,p-Xylene                    | 5.7 | 10  | J    | ng/L  | 1  | 6/13/2014            |
| o-Xylene                      | 1.3 | 5.0 | J    | ng/L  | 1  | 6/13/2014            |
| Styrene                       | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| Bromoform                     | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| Isopropylbenzene              | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,1,2,2-Tetrachloroethane     | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| Bromobenzene                  | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,2,3-Trichloropropane        | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| n-Propylbenzene               | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 2-Chlorotoluene               | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,3,5-Trimethylbenzene        | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 4-Chlorotoluene               | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| tert-Butylbenzene             | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,2,4-Trimethylbenzene        | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| sec-Butylbenzene              | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,3-Dichlorobenzene           | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 4-Isopropyltoluene            | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,4-Dichlorobenzene           | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,2-Dichlorobenzene           | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| n-Butylbenzene                | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,2-Dibromo-3-chloropropane   | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,2,4-Trichlorobenzene        | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| Hexachlorobutadiene           | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| Naphthalene                   | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |
| 1,2,3-Trichlorobenzene        | ND  | 5.0 |      | ng/L  | 1  | 6/13/2014            |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε Value above quantitation range
- Analyte detected below quantitation limits
  Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank

**Date:** 24-Jun-14

- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 10, 2014

Joseph Tracy Intera, Inc. 6000 Uptown Boulevard, NE Suite 220 Albuquerque, NM 87110

TEL: (505) 246-1600 FAX (505) 246-2600

RE: Bell Trading Post OrderNo.: 1406074

## Dear Joseph Tracy:

Hall Environmental Analysis Laboratory received 5 sample(s) on 6/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

#### REPORT OF ANALYSIS

June 09, 2014

Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

ESC Sample # : L702253-01

Date Received Description

June

03, 2014

Site ID :

Sample ID

1406074-001A AIR-O-01

Project # :

Collected By : Collection Date : 06/02/14 07:58

| Parameter                     | Cas#       | Mol Wgh | t RDL1 | RDL2  | ppbv    | ug/m3   | Method | Date     | Dil. |
|-------------------------------|------------|---------|--------|-------|---------|---------|--------|----------|------|
| Volatile Organics - TO-15 SIM |            |         |        |       | 90      |         |        |          |      |
| Benzene                       | 71-43-2    | 78.1    | 0.020  | 0.064 | 0.12    | 0.38    | TO-15  | 06/08/14 | 1    |
| Carbon tetrachloride          | 56-23-5    | 154     | 0.020  | 0.13  | 0.080   | 0.50    | TO-15  | 06/08/14 | 1    |
| Chloroethane                  | 75-00-3    | 64.5    | 0.040  | 0.11  | < 0.040 | < 0.11  | TO-15  | 06/08/14 | 1    |
| Chloroform                    | 67-66-3    | 119     | 0.020  | 0.097 | < 0.020 | < 0.097 | TO-15  | 06/08/14 | 1    |
| Chloromethane                 | 74-87-3    | 50.5    | 0.030  | 0.062 | 0.41    | 0.85    | TO-15  | 06/08/14 | 1    |
| 1,2-Dibromoethane             | 106-93-4   | 188     | 0.020  | 0.15  | < 0.020 | < 0.15  | TO-15  | 06/08/14 | 1    |
| 1,4-Dichlorobenzene           | 106-46-7   | 147     | 0.020  | 0.12  | < 0.020 | < 0.12  | TO-15  | 06/08/14 | 1    |
| 1,1-Dichloroethane            | 75-34-3    | 98      | 0.020  | 0.080 | < 0.020 | < 0.080 | TO-15  | 06/08/14 | 1    |
| 1,1-Dichloroethene            | 75-35-4    | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1    |
| cis-1,2-Dichloroethene        | 156-59-2   | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1    |
| trans-1,2-Dichloroethene      | 156-60-5   | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1    |
| 1,2-Dichloropropane           | 78-87-5    | 113     | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15  | 06/08/14 | 1    |
| cis-1,3-Dichloropropene       | 10061-01-5 | 5 111   | 0.020  | 0.091 | < 0.020 | < 0.091 | TO-15  | 06/08/14 | 1    |
| trans-1,3-Dichloropropene     | 10061-02-6 | 5 111   | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15  | 06/08/14 | 1    |
| Ethylbenzene                  | 100-41-4   | 106     | 0.030  | 0.13  | 0.072   | 0.31    | TO-15  | 06/08/14 | 1    |
| 1,1,2,2-Tetrachloroethane     | 79-34-5    | 168     | 0.020  | 0.14  | < 0.020 | < 0.14  | TO-15  | 06/08/14 | 1    |
| Tetrachloroethylene           | 127-18-4   | 166     | 0.020  | 0.14  | 0.045   | 0.31    | TO-15  | 06/08/14 | 1    |
| 1,1,1-Trichloroethane         | 71-55-6    | 133     | 0.020  | 0.11  | < 0.020 | < 0.11  | TO-15  | 06/08/14 | 1    |
| 1,1,2-Trichloroethane         | 79-00-5    | 133     | 0.030  | 0.16  | < 0.030 | < 0.16  | TO-15  | 06/08/14 | 1    |
| Trichloroethylene             | 79-01-6    | 131     | 0.020  | 0.11  | 0.020   | 0.11    | TO-15  | 06/08/14 | 1    |
| Vinyl chloride                | 75-01-4    | 62.5    | 0.020  | 0.051 | < 0.020 | < 0.051 | TO-15  | 06/08/14 |      |
| Vinyl acetate                 | 108-05-4   | 86.1    | 0.020  | 0.070 | < 0.020 | < 0.070 | TO-15  | 06/08/14 | 1    |
| 1,4-Bromofluorobenzene        | 460-00-4   |         |        |       | 118     | % Rec.  | TO-15  | 06/08/14 | 1    |

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

## REPORT OF ANALYSIS

Hall Environmental Analysis Laborat

4901 Hawkins NE Albuquerque, NM 87109

June 09, 2014

ESC Sample # : L702253-02

Date Received : June 03, 2014

Description

1406074-002A AIR-I-01

Site ID :

Sample ID

Collected By : Collection Date : 06/02/14 08:19

Project # :

| Parameter                     | Cas# 1     | Mol Wgh | t RDL1 | RDL2  | ppbv    | ug/m3   | Method | Date     | Dil. |
|-------------------------------|------------|---------|--------|-------|---------|---------|--------|----------|------|
| Volatile Organics - TO-15 SIM |            |         |        |       |         |         |        |          | _    |
| Benzene                       | 71-43-2    | 78.1    | 0.020  | 0.064 | 0.20    | 0.64    | TO-15  | 06/08/14 | 1.   |
| Carbon tetrachloride          | 56-23-5    | 154     | 0.020  | 0.13  | 0.079   | 0.50    | TO-15  | 06/08/14 | Ť    |
| Chloroethane                  | 75-00-3    | 64.5    | 0.040  |       | < 0.040 | < 0.11  | TO-15  | 06/08/14 | 7    |
| Chloroform                    | 67-66-3    | 119     |        | 0.097 | 0.12    | 0.58    | TO-15  | 06/08/14 | 1    |
| Chloromethane                 | 74-87-3    | 50.5    |        | 0.062 | 0.44    | 0.91    | TO-15  | 06/08/14 | 1    |
| 1,2-Dibromoethane             | 106-93-4   | 188     | 0.020  | 0.15  | < 0.020 | < 0.15  | TO-15  | 06/08/14 | 1    |
| 1,4-Dichlorobenzene           | 106-46-7   | 147     | 0.020  | 0.12  | 0.020   | 0.12    | TO-15  | 06/08/14 | 1    |
| 1,1-Dichloroethane            | 75-34-3    | 98      |        | 0.080 | < 0.020 | < 0.080 | TO-15  | 06/08/14 | 1    |
| 1,1-Dichloroethene            | 75-35-4    | 96.9    | 0.020  |       | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 7    |
| cis-1,2-Dichloroethene        | 156-59-2   | 96.9    | 0.020  |       | < 0.020 | < 0.079 | TO-15  | 06/08/14 | Ť    |
| trans-1,2-Dichloroethene      | 156-60-5   | 96.9    |        | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 7    |
| 1,2-Dichloropropane           | 78-87-5    | 113     | 0.030  |       | < 0.030 | < 0.14  | TO-15  | 06/08/14 | i    |
| cis-1,3-Dichloropropene       | 10061-01-5 | 111     | 0.020  |       | < 0.020 | < 0.091 | TO-15  | 06/08/14 | Ť    |
| trans-1,3-Dichloropropene     | 10061-02-6 | 111     | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15  | 06/08/14 | 1    |
| Ethylbenzene                  | 100-41-4   | 106     | 0.030  | 0.13  | 0.22    | 0.95    | TO-15  | 06/08/14 | 1    |
| 1,1,2,2-Tetrachloroethane     | 79-34-5    | 168     | 0.020  | 0.14  | < 0.020 | < 0.14  | TO-15  | 06/08/14 | 1    |
| Tetrachloroethylene           | 127-18-4   | 166     | 0.020  | 0.14  | 0.028   | 0.19    | TO-15  | 06/08/14 | i    |
| 1,1,1-Trichloroethane         | 71-55-6    | 133     | 0.020  | 0.11  | < 0.020 | < 0.11  | TO-15  | 06/08/14 | Ť    |
| 1,1,2~Trichloroethane         | 79-00-5    | 133     | 0.030  | 0.16  | < 0.030 | < 0.16  | TO-15  | 06/08/14 | 7    |
| Trichloroethylene             | 79-01-6    | 131     | 0.020  | 0.11  | 0.040   | 0.21    | TO-15  | 06/08/14 | 1    |
| Vinyl chloride                | 75-01-4    | 62.5    | 0.020  |       | < 0.020 | < 0.051 | TO-15  | 06/08/14 | 1    |
| Vinyl acetate                 | 108-05-4   | 86.1    | 0.020  |       | < 0.020 | < 0.070 | TO-15  | 06/08/14 | 7    |
| 1,4-Bromofluorobenzene        | 460-00-4   |         | 0.020  | 0.070 | 117     | % Rec.  | TO-15  | 06/08/14 | 1    |

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

### REPORT OF ANALYSIS

June 09, 2014

Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

ESC Sample # : L702253-03

Date Received :

03, 2014

Description

June

1406074-003A AIR-I-02

Site ID : Project # :

Collected By

Sample ID

Collection Date:

06/02/14 08:22

| Parameter                     | Cas#       | Mol Wgh | t RDL1 | RDL2  | ppbv    | ug/m3   | Method | Date     | _Dil. |
|-------------------------------|------------|---------|--------|-------|---------|---------|--------|----------|-------|
| Volatile Organics - TO-15 SIM |            |         |        |       |         |         |        |          |       |
| Benzene                       | 71-43-2    | 78.1    | 0.020  | 0.064 | 0.22    | 0.70    | TO-15  | 06/08/14 | 1     |
| Carbon tetrachloride          | 56-23-5    | 154     | 0.020  | 0.13  | 0.074   | 0.47    | TO-15  | 06/08/14 | 1     |
| Chloroethane                  | 75-00-3    | 64.5    | 0.040  | 0.11  | 0.077   | 0.20    | TO-15  | 06/08/14 | 1     |
| Chloroform                    | 67-66-3    | 119     | 0.020  | 0.097 | 0.12    | 0.58    | TO-15  | 06/08/14 | 1     |
| Chloromethane                 | 74-87-3    | 50.5    | 0.030  | 0.062 | 0.53    | 1.1     | TO-15  | 06/08/14 | 1     |
| 1,2-Dibromoethane             | 106-93-4   | 188     | 0.020  | 0.15  | < 0.020 | < 0.15  | TO-15  | 06/08/14 | 1     |
| 1,4-Dichlorobenzene           | 106-46-7   | 147     | 0.020  | 0.12  | < 0.020 | < 0.12  | TO-15  | 06/08/14 | 1     |
| 1,1-Dichloroethane            | 75-34-3    | 98      | 0.020  | 0.080 | < 0.020 | < 0.080 | TO-15  | 06/08/14 | 1     |
| 1,1-Dichloroethene            | 75-35-4    | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1     |
| cis-1,2-Dichloroethene        | 156-59-2   | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1     |
| trans-1,2-Dichloroethene      | 156-60-5   | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1     |
| 1,2-Dichloropropane           | 78-87-5    | 113     | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15  | 06/08/14 | 1     |
| cis-1,3-Dichloropropene       | 10061-01-5 | 111     | 0.020  | 0.091 | < 0.020 | < 0.091 | TO-15  | 06/08/14 | 1     |
| trans-1,3-Dichloropropene     | 10061-02-6 | 111     | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15  | 06/08/14 | 1     |
| Ethylbenzene                  | 100-41-4   | 106     | 0.030  | 0.13  | 0.30    | 1.3     | TO-15  | 06/08/14 | 1     |
| 1,1,2,2-Tetrachloroethane     | 79-34-5    | 168     | 0.020  | 0.14  | < 0.020 | < 0.14  | TO-15  | 06/08/14 |       |
| Tetrachloroethylene           | 127-18-4   | 166     | 0.020  | 0.14  | 0.027   | 0.18    | TO-15  | 06/08/14 | 1     |
| 1,1,1-Trichloroethane         | 71-55-6    | 133     | 0.020  | 0.11  | < 0.020 | < 0.11  | TO-15  | 06/08/14 | 1     |
| 1,1,2-Trichloroethane         | 79-00-5    | 133     | 0.030  | 0.16  | < 0.030 | < 0.16  | TO-15  | 06/08/14 | 1     |
| Trichloroethylene             | 79-01-6    | 131     | 0.020  | 0.11  | 0.12    | 0.64    | TO-15  | 06/08/14 | 1     |
| Vinyl chloride                | 75-01-4    | 62.5    | 0.020  | 0.051 | < 0.020 | < 0.051 | TO-15  | 06/08/14 | 1     |
| Vinyl acetate                 | 108-05-4   | 86.1    | 0.020  | 0.070 | < 0.020 | < 0.070 | TO-15  | 06/08/14 | 1     |
| 1,4-Bromofluorobenzene        | 460-00-4   |         |        |       | 124     | % Rec.  | TO-15  | 06/08/14 | 1     |

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.



'12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 09, 2014

Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

ESC Sample # : L702253-04

Date Received June

Site ID :

Description

1406074-004A AIR-C-01

03, 2014

Project #:

Collected By

Sample ID

Collection Date: 06/02/14 08:55

| Parameter                     | Cas#       | Mol Wgh | t RDL1 | RDL2  | ppbv    | ug/m3   | Method | Date     | Dil. |
|-------------------------------|------------|---------|--------|-------|---------|---------|--------|----------|------|
| Volatile Organics - TO-15 SIM |            |         |        |       |         |         |        |          |      |
| Benzene                       | 71-43-2    | 78.1    | 0.020  | 0.064 | 0.39    | 1.2     | TO-15  | 06/08/14 | 1    |
| Carbon tetrachloride          | 56-23-5    | 154     | 0.020  | 0.13  | 0.082   | 0.52    | TO-15  | 06/08/14 | 1    |
| Chloroethane                  | 75-00-3    | 64.5    | 0.040  | 0.11  | < 0.040 | < 0.11  | TO-15  | 06/08/14 | 1    |
| Chloroform                    | 67-66-3    | 119     | 0.020  | 0.097 | 0.30    | 1.5     | TO-15  | 06/08/14 | 1    |
| Chloromethane                 | 74-87-3    | 50.5    | 0.030  | 0.062 | 0.51    | 1.1     | TO-15  | 06/08/14 | 1    |
| 1,2-Dibromoethane             | 106-93-4   | 188     | 0.020  | 0.15  | < 0.020 | < 0.15  | TO-15  | 06/08/14 | 1    |
| 1,4-Dichlorobenzene           | 106-46-7   | 147     | 0.020  | 0.12  | < 0.020 | < 0.12  | TO-15  | 06/08/14 | 1    |
| 1,1-Dichloroethane            | 75-34-3    | 98      | 0.020  | 0.080 | < 0.020 | < 0.080 | TO-15  | 06/08/14 | 1    |
| 1,1-Dichloroethene            | 75-35-4    | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1    |
| cis-1,2-Dichloroethene        | 156-59-2   | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1    |
| trans-1,2-Dichloroethene      | 156-60-5   | 96.9    | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15  | 06/08/14 | 1    |
| 1,2-Dichloropropane           | 78-87-5    | 113     | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15  | 06/08/14 | 1    |
| cis-1,3-Dichloropropene       | 10061-01-5 | 5 111   | 0.020  | 0.091 | < 0.020 | < 0.091 | TO-15  | 06/08/14 | 1    |
| trans-1,3-Dichloropropene     | 10061-02-6 | 5 111   | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15  | 06/08/14 |      |
| Ethylbenzene                  | 100-41-4   | 106     | 0.030  | 0.13  | 1.4     | 6.1     | TO-15  | 06/08/14 | 1    |
| 1,1,2,2-Tetrachloroethane     | 79-34-5    | 168     | 0.020  | 0.14  | < 0.020 | < 0.14  | TO-15  | 06/08/14 | 1    |
| Tetrachloroethylene           | 127-18-4   | 166     | 0.080  | 0.54  | 2.7     | 18.     | TO-15  | 06/09/14 | 4    |
| 1,1,1-Trichloroethane         | 71-55-6    | 133     | 0.020  | 0.11  | < 0.020 | < 0.11  | TO-15  | 06/08/14 |      |
| 1,1,2-Trichloroethane         | 79-00-5    | 133     | 0.030  | 0.16  | < 0.030 | < 0.16  | TO-15  | 06/08/14 |      |
| Trichloroethylene             | 79-01-6    | 131     | 0.020  | 0.11  | 0.58    | 3.1     | TO-15  | 06/08/14 |      |
| Vinyl chloride                | 75-01-4    | 62.5    | 0.020  | 0.051 | < 0.020 | < 0.051 | TO-15  | 06/08/14 |      |
| Vinyl acetate                 | 108-05-4   | 86.1    | 0.020  | 0.070 | 0.066   | 0.23    | TO-15  | 06/08/14 |      |
| 1,4-Bromofluorobenzene        | 460-00-4   |         |        |       | 119     | % Rec.  | TO-15  | 06/08/14 | 1    |

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859

Fax (615) 758-5859 Tax I.D. 62-0814289

1

06/08/14

Est. 1970

TO-15

### REPORT OF ANALYSIS

June 09, 2014

Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

Date Received :

Description

June

03, 2014

Sample ID

Collected By Collection Date :

1406074-005A AIR-C-02

06/02/14 09:00

ESC Sample # : L702253-05

Site ID :

123

% Rec.

Project # :

| Parameter                     | Cas#I      | Mol_Wght | t RDL1 | RDL2  | ppbv    | ug/m3   | Method    | _Date_   | Dil. |
|-------------------------------|------------|----------|--------|-------|---------|---------|-----------|----------|------|
| Volatile Organics - TO-15 SIM |            |          |        |       |         |         |           |          |      |
| Benzene                       | 71-43-2    | 78.1     | 0.020  | 0.064 | 0.18    | 0.57    | TO-15     | 06/08/14 | 1    |
| Carbon tetrachloride          | 56-23-5    | 154      | 0.020  | 0.13  | 0.086   | 0.54    | TO-15     | 06/08/14 | 1    |
| Chloroethane                  | 75-00-3    | 64.5     | 0.040  | 0.11  | < 0.040 | < 0.11  | TO-15     | 06/08/14 | 1    |
| Chloroform                    | 67-66-3    | 119      | 0.020  | 0.097 | 0.35    | 1.7     | TO-15     | 06/08/14 | 1    |
| Chloromethane                 | 74-87-3    | 50.5     | 0.030  | 0.062 | 0.44    | 0.91    | TO-15     | 06/08/14 | 1    |
| 1,2-Dibromoethane             | 106-93-4   | 188      | 0.020  | 0.15  | < 0.020 | < 0.15  | TO-15     | 06/08/14 | 1    |
| 1,4-Dichlorobenzene           | 106-46-7   | 147      | 0.020  | 0.12  | < 0.020 | < 0.12  | TO-15     | 06/08/14 | 1    |
| 1,1-Dichloroethane            | 75-34-3    | 98       | 0.020  | 0.080 | < 0.020 | < 0.080 | TO-15     | 06/08/14 | 1    |
| 1,1-Dichloroethene            | 75-35-4    | 96.9     | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15     | 06/08/14 | 1    |
| cis-1,2-Dichloroethene        | 156-59-2   | 96.9     | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15     | 06/08/14 | 1    |
| trans-1,2-Dichloroethene      | 156-60-5   | 96.9     | 0.020  | 0.079 | < 0.020 | < 0.079 | TO-15     | 06/08/14 | 1    |
| 1,2-Dichloropropane           | 78-87-5    | 113      | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15     | 06/08/14 | 1    |
| cis-1,3-Dichloropropene       | 10061-01-5 | 111      | 0.020  | 0.091 | < 0.020 | < 0.091 | TO-15     | 06/08/14 | 1    |
| trans-1,3-Dichloropropene     | 10061-02-6 | 111      | 0.030  | 0.14  | < 0.030 | < 0.14  | TO-15     | 06/08/14 | 1    |
| Ethylbenzene                  | 100-41-4   | 106      | 0.030  | 0.13  | 0.43    | 1.9     | TO-15     | 06/08/14 | 1    |
| 1,1,2,2-Tetrachloroethane     | 79-34-5    | 168      | 0.020  | 0.14  | < 0.020 | < 0.14  | TO-15     | 06/08/14 |      |
| Tetrachloroethylene           | 127-18-4   | 166      | 0.020  | 0.14  | 0.060   | 0.41    | TO-15     | 06/08/14 | 1    |
| 1,1,1-Trichloroethane         | 71-55-6    | 133      | 0.020  | 0.11  | < 0.020 | < 0.11  | TO-15     | 06/08/14 | 1    |
| 1,1,2-Trichloroethane         | 79-00-5    | 133      | 0.030  | 0.16  | < 0.030 | < 0.16  | TO-15     | 06/08/14 | 1    |
| Trichloroethylene             | 79-01-6    | 131      | 0.020  | 0.11  | 0.46    | 2.5     | TO-15     | 06/08/14 | 1    |
| Vinyl chloride                | 75-01-4    | 62.5     | 0.020  | 0.051 | < 0.020 | < 0.051 | TO-15     | 06/08/14 | 1    |
| Vinyl acetate                 | 108-05-4   | 86.1     | 0.020  | 0.070 | < 0.020 | < 0.070 | TO-15     | 06/08/14 | 1    |
|                               |            |          |        |       | 400     |         | - A - A - | 00100111 | •    |

RDL1 = ppbv , RDL2 = ug/m3

1,4-Bromofluorobenzene

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

460-00-4



Hall Environmental Analysis Laboratory

4901 Hawkins NE

Albuquerque, NM 87109

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L702253

June 09, 2014

| na lvta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laboratory<br>Units | Blank<br>% Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit                                  | Batch            | Date Analyze     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|------------------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unites              | * Nec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BIRIT                                  |                  |                  |
| l,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dqq                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| ,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| ,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 | and the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                  | 06/08/14 17:     |
| ,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| ,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| ,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dqq                 | raging an administration of the control of the cont | yeng a na a makan makan ma             |                  | 06/08/14 17:     |
| ,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 | Silian in 1962 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                  | 06/08/14 17:     |
| ,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| enzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 | an i ang ang ang ang ang ang ang ang ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | yay kenyaya a majara sa sasara         |                  | 06/08/14 17:     |
| arbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 | i kalindi Kir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                  | 06/08/14 17:     |
| hloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < .04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| hloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second second second second |                  | 06/08/14 17:     |
| hloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dqq                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| is-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dqq                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| thylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er og i skaltanalija                   |                  | 06/08/14 17:     |
| etrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| rans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 | . And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A STANDARD CONTRACTOR OF STANDARD CO.  |                  | 06/08/14 17:     |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dqq                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14.17:     |
| richloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| Jinyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                  | 06/08/14 17:     |
| l,4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Rec.              | 101.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60-140                                 | WG725325         | 06/08/14 17:     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory Co       | ntrol Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                  |                  |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Known Val           | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % Rec                                  | Limit            | Batch            |
| THE PROPERTY OF THE PROPERTY O |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 0.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.4                                   | 70-130           | WG7253           |
| l,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 0.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.6                                   | 70-130           | WG7253           |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96.3                                   | 70-130           | WG7253           |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 5<br>. 5          | 0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.8                                   | 70-130           | WG7253           |
| l,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.5                                   | 70-130           | WG7253           |
| L,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>.</b> 5          | 0.382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.                                   | 70-130           | WG7253           |
| l,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79.4                                   | 70-130<br>70-130 | WG7253           |
| l,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 0.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.                                   | 70-130           | WG7253           |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 70-130           | WG7253           |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.2                                   | 70-130           | WG7253<br>WG7253 |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . <u>.5</u> %       | 0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 87.5                                 | 70-130           |                  |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.8                                   |                  | WG7253           |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90.4                                   | 70-130           | WG7253           |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • 5                 | 0.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70.7                                   | 70-130           | WG7253           |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.8                                   | 70-130           | WG7253           |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.1                                   | 70-130           | WG7253           |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 0.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.8                                   | 70-130           | WG7253           |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.                                   | 70-130           | WG7253           |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.0                                   | 70-130           | WG7253           |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5</b>            | 0.459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.8                                   | 70-130           | WG7253           |
| Frichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.6                                   | 70-130           | WG7253           |
| Vinyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.9                                   | 70-130           | WG7253           |
| 7inyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                  | 0.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71.5                                   | 70-130           | WG7253           |
| ,4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107.0                                  | 60-140           | WG7253           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oratory Control     | Sample Duplica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>tel                                |                  |                  |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sult Ref            | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit                                  | RPD L            | imit Batch       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARAT MATERIAL REST  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70-130                                 | 4.49 2           | 5 <b>WG72</b> 53 |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second s | 478 0.457           | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 8.36 2           |                  |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 421 0.458           | 84.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70-130                                 |                  |                  |
| 1 1 0 m-1-11-11-11-11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ppb 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 463 0.481           | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70-130                                 | 3.90 2.          |                  |
| 1,1,2-Trichloroethane 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 421 0.419           | 84.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70-130                                 | 0.580 2          | 5 WG7253         |

<sup>\*</sup> Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'



Hall Environmental Analysis Laboratory

4901 Hawkins NE

Albuquerque, NM 87109

Quality Assurance Report Level II

L702253

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 09, 2014

| Analyte                   | Units      | Result | Ref   | mple Duplicate<br>%Rec | Limit  | RPD    | <u>Limit</u> | Batch   |
|---------------------------|------------|--------|-------|------------------------|--------|--------|--------------|---------|
| 1,2-Dibromoethane         | daa        | 0.467  | 0.506 | 93.0                   | 70-130 | 8.01   | 25           | WG72532 |
| 1,2-Dichloropropane       | ppb        | 0.399  | 0.397 | 80.0                   | 70-130 | 0.520  | 25           | WG72532 |
| 1.4-Dichlorohenzene       | pph        | 0.448  | 0.546 | 90.0                   | 70-130 | 19.7   | 25           | WG72532 |
| Benzene                   | dqq        | 0.406  | 0.406 | <u>81.0</u>            | 70-130 | 0.0400 | 25           | WG72532 |
| Carbon tetrachloride      | ppb        | 0.480  | 0.437 | 96.0                   | 70-130 | 9.31   | 25           | WG72532 |
| Chloroethane              | dqq        | 0.401  | 0.374 | 80.0                   | 70-130 | 6.98   | 25           | WG72532 |
| Chloroform                | ppb<br>ppb | 0.482  | 0.452 | 96.0                   | 70-130 | 6.39   | 25           | WG72532 |
| Chloromethane             | ppb        | 0.384  | 0.354 | 77.0                   | 70-130 | 8.36   | 25           | WG72532 |
| cis-1,2-Dichloroethene    | ppb        | 0.411  | 0.404 | 82.0                   | 70-130 | 1.71   | 25           | WG72532 |
| cis-1,3-Dichloropropene   | ppb        | 0.417  | 0.430 | 83.0                   | 70-130 | 3.04   | 25           | WG72532 |
| Ethylbenzene              | ppb        | 0.455  | 0.499 | 91.0                   | 70-130 | 9.32   | 25           | WG72532 |
| Tetrachloroethylene       | ppb        | 0.495  | 0.500 | 99.0                   | 70-130 | 1.10   | 25           | WG72532 |
| trans-1,2-Dichloroethene  | ppb        | 0.420  | 0.400 | 84.0                   | 70-130 | 4.88   | 25           | WG72532 |
| trans-1,3-Dichloropropene | ppb        | 0.423  | 0.459 | 85.0                   | 70-130 | 8.04   | 25           | WG72532 |
| Trichloroethylene         | ppb        | 0.429  | 0.428 | 86.0                   | 70-130 | 0.260  | 25           | WG72532 |
| Vinyl acetate             | dqq        | 0.500  | 0.439 | 1.00.                  | 70-130 | 12.9   | 25           | WG72532 |
| Vinyl chloride            | ppb        | 0.390  | 0.358 | 78.0                   | 70-130 | 8.54   | 25           | WG72532 |
| 1,4-Bromofluorobenzene    | 5.74       |        |       | 107.0                  | 60-140 |        |              | WG72532 |

Batch number /Run number / Sample number cross reference

WG725325: R2936966: L702253-01 02 03 04 05

<sup>\* \*</sup> Calculations are performed prior to rounding of reported values.

<sup>\*</sup> Performance of this Analyte is outside of established criteria.
For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

| Client Name: INT                                                                        | Work Order Number:       | 1406074                     |                              | RcptNo:                        | 1                          |
|-----------------------------------------------------------------------------------------|--------------------------|-----------------------------|------------------------------|--------------------------------|----------------------------|
| Received by/date:                                                                       | 06/02/14                 |                             |                              | ***                            |                            |
| Logged By: Michelle Garcia                                                              | 6/2/2014 5:31:00 PM      |                             | Michelle Gar                 | ui.                            |                            |
| Completed By: Michelle Garcia                                                           | 6/2/2014 5:37:01 PM      |                             | Michelle Gan<br>Michelle Gan | uie                            |                            |
| Reviewed By:                                                                            | 06/02/14                 |                             |                              |                                |                            |
| Chain of Custody                                                                        |                          |                             |                              | U C                            |                            |
| Custody seals intact on sample bottles                                                  | ?                        | Yes $\square$               | No 🗌                         | Not Present 🗹                  |                            |
| 2. Is Chain of Custody complete?                                                        |                          | Yes 🗸                       | No 🗌                         | Not Present                    |                            |
| 3. How was the sample delivered?                                                        |                          | Courier                     |                              |                                |                            |
| Log In                                                                                  |                          |                             |                              |                                |                            |
| 4. Was an attempt made to cool the sam                                                  | ples?                    | Yes 🗸                       | No $\square$                 | na 🗆                           |                            |
| 5. Were all samples received at a temper                                                | rature of >0° C to 6.0°C | Yes 🗹                       | No 🗆                         | NA $\square$                   |                            |
| 6. Sample(s) in proper container(s)?                                                    |                          | Yes 🗸                       | No 🗆                         |                                |                            |
| 7. Sufficient sample volume for indicated                                               | test(s)?                 | Yes 🗸                       | No 🗌                         |                                |                            |
| 8. Are samples (except VOA and ONG) p                                                   | roperly preserved?       | Yes 🗸                       | No 🗌                         |                                |                            |
| 9. Was preservative added to bottles?                                                   |                          | Yes 🗌                       | No 🗹                         | NA 🗌                           |                            |
| 10.VOA vials have zero headspace?                                                       |                          | Yes 🗌                       | No 🗆                         | No VOA Vials                   |                            |
| 11. Were any sample containers received                                                 | broken?                  | Yes                         | No 🗹                         | # of preserved bottles checked | ,                          |
| 12.Does paperwork match bottle labels? (Note discrepancies on chain of custoo           | ly)                      | Yes 🗸                       | No 🗔                         | for pH: (<2 c                  | or >12 unless noted)       |
| 13. Are matrices correctly identified on Cha                                            | ain of Custody?          | Yes 🗸                       | No 🗌                         | Adjusted?                      | <del>////</del>            |
| 14. Is it clear what analyses were requeste                                             |                          | Yes 🗹                       | No 📙                         | 01 1 1                         |                            |
| 15. Were all holding times able to be met?<br>(If no, notify customer for authorization |                          | Yes 🗸                       | No 📙                         | Checked by:                    |                            |
| Special Handling (if applicable)                                                        | e                        |                             |                              |                                |                            |
| 16. Was client notified of all discrepancies                                            | with this order?         | Yes 🗌                       | No 🗆                         | NA 🗹                           |                            |
| Person Notified:                                                                        | Date:                    |                             |                              |                                |                            |
| By Whom:                                                                                | Via:                     | eMail F                     | Phone  Fax                   | ☐ In Person                    |                            |
| Regarding:                                                                              | a wa n                   | 2 2 2 2 2                   |                              |                                |                            |
| Client Instructions:                                                                    | V X 45 69                |                             |                              |                                |                            |
| 17. Additional remarks:                                                                 |                          |                             |                              |                                |                            |
| 18. Cooler Information                                                                  |                          |                             |                              |                                |                            |
|                                                                                         |                          |                             |                              |                                |                            |
| 700 SCSI 4550 WORLD SERVE SSS 1448 SCSI FROM 9779 SERVE AND 9779                        |                          | men zawati tiliyek semila e |                              |                                | CONTRACTOR AND AND AND AND |
|                                                                                         | ***                      |                             |                              |                                |                            |

|               |                   | -ot-Cı       | ustody Record                            | Turn-Around             | Time:                |                                   |              |                                                                 |           |            |            |              |           |             | -          |             |                 |           |                      |
|---------------|-------------------|--------------|------------------------------------------|-------------------------|----------------------|-----------------------------------|--------------|-----------------------------------------------------------------|-----------|------------|------------|--------------|-----------|-------------|------------|-------------|-----------------|-----------|----------------------|
| Client:       | IN-               | (ELA         | 7                                        | ☐ Standard              |                      |                                   |              |                                                                 |           | A          | N          | AL           | YS:       | [S          |            | ВС          |                 | NTA<br>TO |                      |
| Mailing       | Address           | ::<br>On     | File                                     | Bell                    | Tradu                | 19 Past                           |              | 490                                                             | 01 H      |            |            |              |           |             | que, i     |             | 7109            |           |                      |
|               |                   |              | L                                        | Project #:              |                      | $\circ$                           |              | Te                                                              | el. 50    | 5-34       | 5-39       | 75           | Fa        | x 50        | 5-34       | 5-410       | 7               |           |                      |
| Phone         | #:                | ('_          | k                                        |                         | · «                  |                                   |              | ### BTEX + MTBE + TPH (Gas only)    TPH 8015B (GRO / DRO / MRO) |           |            |            |              |           |             |            |             |                 |           |                      |
| email c       | r Fax#:           |              |                                          | Project Mana            | iger:                |                                   | =            | (ylu                                                            | 8         |            |            |              | 16        | 3           |            |             |                 |           |                      |
| QA/QC<br>Star | Package:<br>idard |              | ☐ Level 4 (Full Validation)              | Joe                     | Tracy                |                                   | TMB's (8021) | (Gas o                                                          | 30 / M    |            |            | SIMS)        |           | 0,40        |            |             | 5               |           |                      |
| Accred □ NEL  |                   | □ Othe       | er                                       | Sampler: C              | . Yes                | T<br>No                           | - TMB        | 표                                                               | 0/0       | 8.1)       |            | 8270         | 2         | 3,NO2       | / 808/     | 1           | 7.00            |           | (Z                   |
| * EDI         | (Type)            | X            | <del></del>                              | Sample Tem              |                      | Jane Harry                        | BE -         | 3E                                                              | 9         | 4 0        | Š          | ō            | tals      | ž   ;       | des        | 9           | 1               | }         | ع ا                  |
| Date          | Time              | Matrix       | Sample Request ID                        | Container<br>Type and # | Preservative<br>Type | HEAL NO.                          | BTEX + MTBE  | BTEX + MTI                                                      | TPH 8015B | TPH (Metho | EDB (Metho | PAH's (8310  | RCRA 8 Me | Anions (r,C | 8260B (VOA | 8270 (Semi- | 70-15           |           | Air Bubbles (Y or N) |
| 6/2/14        | 6758              | AW           | Air-0-\$1                                | GL Suuma                |                      | -00)                              |              |                                                                 |           | {          |            |              | 1         |             |            |             | 1+1             |           |                      |
| 1             | 0819              |              | A11-I-01                                 |                         | _                    | -002                              |              |                                                                 |           |            |            |              |           |             |            |             | स               |           |                      |
|               | 0822              |              | Air-I-12                                 |                         | _                    | -003                              |              |                                                                 |           |            |            | $\exists$    | 7         | $\top$      | 1          |             | H               |           | 1                    |
|               | P855              |              | AW-C-01                                  |                         |                      | -004                              |              |                                                                 | $\exists$ |            | 7          | 7            |           | $\top$      | 1          | T           | H               |           |                      |
| V             | 8900              | V            | Air-C-62                                 |                         |                      | -065                              |              |                                                                 |           |            |            |              |           | I           |            |             | Y               | 1         |                      |
|               |                   |              |                                          |                         |                      |                                   | -            |                                                                 |           | $\dashv$   | $\dashv$   | 4            | -         | +           | +          | +           | $\vdash$        | +         |                      |
|               |                   | <del> </del> | <del></del>                              | -                       | <del></del>          |                                   |              |                                                                 | $\dashv$  | $\dashv$   | $\dashv$   | $\dashv$     | -         | +           | 10,        | +-          | $\vdash \vdash$ | +         | ++-                  |
|               |                   |              |                                          |                         |                      |                                   |              |                                                                 |           |            |            |              | 1         | I           | I          |             |                 |           |                      |
|               |                   |              |                                          | ļ                       |                      |                                   |              | _                                                               | _         |            | 4          | $\downarrow$ | 4         | 4           | _          | <u> </u>    |                 | 4         | 44                   |
|               | ļ                 | ļ            | ļ                                        | ļ                       | <b></b>              |                                   |              |                                                                 |           |            | $\dashv$   | -            | +         | 4           | +          | -           | $\vdash \vdash$ | -         |                      |
| Date:         | Time:             | Relinquish   | ned by:                                  | Received by:            |                      | Date Time                         | Pon          | narks                                                           | لب        |            |            |              |           |             |            |             |                 |           |                      |
| [2            | Timeets<br>1子10   | Cul          | 18UA                                     | MI                      | 6                    | 12/14 1710                        | Ken          | iaiks                                                           | <b>.</b>  |            |            |              |           |             |            |             |                 |           |                      |
| Date:         | Time:             | Relinquish   | 4. dad d <b>≠</b> 0                      | Received by:            | Jul-ne               | Date Time  2. (14)02/14/173       | 3            |                                                                 |           |            |            |              |           |             |            |             |                 |           | )                    |
|               | f necessary,      | samples sub  | mitted to Hall Environmental may be sub- | contracted to other ac  | credited laboratorie | es. This serves as notice of this | possib       | oility. A                                                       | Any sub   | b-contr    | acted      | data wi      | ll be cl  | early n     | otated o   | on the a    | nalytical       | report.   |                      |